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Abstract

This thesis introduces the Quadratic Maximum-Weight Independent Set (Q-
MWIS) problem as the quadratic extension of the Maximum-Weight Indepen-
dent Set (MWIS) problem. Its analysis is motivated by subproblems arising
in algorithms addressing an NP-hard multi-graph matching problem [1].
Following the discussion of its properties, two linearizations of the problem
are constructed as part of a potential solution algorithm: A ”trivial” lin-
earization and one based on a ”reformulation-linearization technique” (RLT)
of Sherali and Adams [2], which leads to varying degrees of tightness of the
corresponding LP relaxation. We show that some of the resulting constraints
for the latter can be redundant, suggesting a more concise formulation and
confirm that it is indeed a valid reformulation of the original problem, with
a tighter LP relaxation than the one of the ”trivial” linearization.
Lastly, we look deeper into the practical part of solving the Q-MWIS prob-
lem and focus on two approaches: A primal-dual algorithm, which creates
approximate solutions by solving Lagrange dual problems and recombining
them in an ”optimized crossover” heuristic, and employing off-the-shelf ILP
solvers. We finish up with tests on which of the previously constructed for-
mulations is preferable for problems of varying size and structure, when using
the optimization software Gurobi [3] – finding that the Sherali-Adams lin-
earization outperforms the trivial linearization in almost all cases and yields
results quicker than the default QIP formulation in most problem instances,
particularly with nonnegative costs.
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Zusammenfassung

Diese Masterarbeit führt das quadratische Maximum-Weight Independent
Set (Q-MWIS) Problem ein – eine Erweiterung des linearen MWIS Problems
um quadratische Terme. Die Analyse dieses Problems wird durch Subprob-
leme motiviert, welche in Algorithmen zum NP-schweren multi-graph match-
ing Problem auftreten [1].
Nach der Einführung des Problems werden, als potenzieller Teil eines Al-
gorithmus für Q-MWIS Probleme, zwei Linearisierungen konstruiert: Eine
”triviale” und eine basierend auf die Reformulierungs-Linearisierungstechnik
von Sherali und Adams [2]. Nachdem wir Letztere auf unser Problem ange-
wandt haben, zeigen wir, dass manche der resultierenden Ungleichungen in
bestimmten Fällen redundant sind und formulieren eine prägnantere Lin-
earisierung.
Im darauffolgenden praktischen Teil, behandeln wir, wie Q-MWIS Prob-
leme gelöst oder approximiert werden können. Hierfür, ziehen wir einen
primal-dual Algorithmus in Betracht, welcher beim lösen eines Lagrange
dual Problems suboptimale Lösungen erzeugt und diese auf optimale Weise
rekombiniert. Anschließend prüfen wir, welche der zuvor konstruierten Refor-
mulierungen des Q-MWIS Problems beim Einsatz üblicher Optimierungssoft-
ware die besten Resultate liefert. Hierfür werden Testprobleme mit unter-
schiedlichen Strukturen generiert und mit Hilfe von Gurobi [3] unter Nutzung
der verschiedenen (Re-)Formulierungen gelöst. Dabei zeigt sich, dass die
Sherali-Adams Linearisierung fast durchgehend bessere Resultate liefert als
die triviale Linearisierung oder die Originalformulierung – mit Ausnahme von
Problemen, mit teilweise negativen Kostentermen.
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Notation

{0, 1}n; [0, 1]n sets of elements (x1, . . . , xn), respectively with xi binary
or xi ∈ [0, 1], ∀i = 1, . . . , n

⟨c, x⟩ scalar product of vectors c, x ∈ Rn, given by
∑n

i=1 cixi

|V| cardinality of a set V

vrtx(P ) set of vertices for a polytope P

conv(X) convex hull of the set X

R≥0 space of nonnegative real numbers

∂f(x0) set of subgradients for convex function f in x0, a point in
its domain

[n] {1, . . . , n}, enumeration set for n ∈ N elements

[[n]]2 {ik | i, k ∈ [n], i < k} index pair set, with sub-indices
from set [n]

NZ set of all label pairs with non-zero pairwise cost, i.e.
NZ ⊆ [[n]]2, with cik ̸= 0, ∀ik ∈ NZ

Fd(J1, J2) polynomials of the form
(∏

j∈J1 xj

)(∏
j∈J2(1− xj)

)
,

where (J1, J2) are subsets of order d, i.e. J1, J2 ⊆ [n],
J1 ∩ J2 = ∅ and |J1 ∪ J2| = d

Nd total number of subset pairs (J1, J2) of order d

fd(J1, J2) polynomials Fd(J1, J2), after applying the relationship
x2
i = xi, ∀i ∈ [n] and linearizing the remaining quadratic

terms

X feasible set of the original problem; X ⊆ Rn with n ∈ N

Xd polyhedral set of feasible elements after Sherali-Adams
transformations of order d on the original feasible set
X ⊆ Rn; Xd ⊆ Rn × Rmd with n,md ∈ N

XP d projection of set Xd ⊆ Rn × Rmd , for n,md ∈ N, on
the realm of the original feasible set X ⊆ Rn, given by
{x | (x,w) ∈ Xd, x ∈ Rn, w ∈ Rmd}

{Ai}i∈[n] set of sets A1, . . . , An

(xi)i∈[n] (x1, . . . , xn), the vector indexed by the set [n]
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Abbreviations

s.t. subject to

w.l.o.g. without loss of generality

RLT Reformulation-Linearization Technique

MWIS Maximum-Weight Independent Set

Q-MWIS Quadratic Maximum-Weight Independent Set

ILP (0-1) Integer Linear Program(ming)

MIP Mixed Integer Program(ming)

QIP Quadratic Integer Program(ming)

LP relaxation Linear Programming relaxation, acquired by relaxing
the integrality constraints of an ILP

QUBO Quadratic Unconstrained Binary Optimization

QAP Quadratic Assignment Problem

MAP-Inference Maximum A Posteriori (MAP) inference for graphical
models
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0 Preliminaries

Before heading on to the main contents of the thesis, we state a few definitions
of important notions used therein.

Definition 0.1 (Linear Programming). Let P be a (convex) polyhedron
of the form P = {x ∈ Rn | Ax ≤ b}, with A ∈ Rm+n and b ∈ Rm. Then,
optimization problems of the form

max
x∈P

⟨c, x⟩ or min
x∈P

⟨c, x⟩ (0.1)

with a cost vector c ∈ Rn, are called linear programs (LP). The maxi-
mized/minimized term ⟨c, x⟩ is its objective function, P its feasible set and
any x ∈ P is called a feasible solution to it.

Hence, the goal of such linear programs is to find a solution x ∈ Rn,
which satisfies the (in-)equality constraints defined by the polyhedral set
P and maximizes/minimizes the objective function. We can see that this
constitutes a convex optimization problem, since feasible set P is convex
and the objective function is linear – thus both concave and convex. This
leads to some favorable properties, such as locally optimal solutions (local
maxima/minima) also being globally optimal.

When the feasible set of a linear program is restricted to binary solutions,
one yields the following concept:

Definition 0.2 (Integer Linear Programming). Consider a linear program
as defined in (0.1). The combinatorial optimization problem that is acquired
by adding integrality constraints of the form x ∈ {0, 1}n, which restrict the
feasible solutions to be binary, is given by

max
x∈P∩{0,1}n

⟨c, x⟩ or min
x∈P∩{0,1}n

⟨c, x⟩ (0.2)

and called a (0-1) integer linear program (ILP).

It is clear that restricting the feasible set to binary values leads to non-
convexity, which makes the problem harder to solve. While linear programs
can generally be solved ”efficiently” in polynomial time (see for example [4]),
the same doesn’t hold for integer linear programs, which can be polynomially
solvable in special cases, but are NP-hard in the general case. Some NP-hard
problem instances, which can be represented as an integer linear program,
are the binary knapsack and maximum a posteriori (MAP) inference problem
for graphical models, as described in [5].

A widely used relaxation of ILPs is given by relaxing their integrality con-
straints:
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Definition 0.3 (Linear Programming Relaxation). The linear programming
(LP) relaxation of the integer linear programs described in (0.2) is given by

max
x∈P∩[0,1]n

⟨c, x⟩ or min
x∈P∩[0,1]n

⟨c, x⟩. (0.3)

It is acquired by replacing the integrality constraints x ∈ {0, 1}n with box
constraints x ∈ [0, 1]n.

Since both P and the set {x | x ∈ [0, 1]n} are convex, the same holds for
their intersection. Therefore, as the name suggests, the LP relaxation is
a linear program, making it easier to solve than the original integer linear
program. Its feasible set is a polytope (a bounded polyhedron).

We note the following properties of integer linear programs and their LP
relaxations, all of which are covered in chapter 3 of [5]:

1. Optimal solutions to linear programs, where the feasible set is a poly-
tope, can be acquired in the vertices thereof. Exemplary for the LP
relaxation in (0.3), this means

max
x∈P∩[0,1]n

⟨c, x⟩ = max
x∈vrtx(P∩[0,1]n)

⟨c, x⟩. (0.4)

2. Optimal solutions for the LP relaxation can incorporate fractional val-
ues, which are infeasible for the underlying integer linear program.
However, if an optimal solution to the LP relaxation contains only
binary values, it is also optimal for the ILP. In this case, the LP relax-
ation is said to be LP-tight.

3. Let conv(X) denote the convex hull of a finite set X, i.e. the smallest
convex set containing X. For any integer linear program as in (0.2), it
holds that

max
x∈P∩{0,1}n

⟨c, x⟩ = max
x∈conv(P∩{0,1}n)

⟨c, x⟩, (0.5)

which means any integer linear program could be solved as a linear
program, by instead considering the convex hull of its feasible set
P ∩ {0, 1}n. This doesn’t conflict with the differing computational
complexities of ILP and LP problems, as describing the convex hull
may take an exponential amount of linear inequalities, which prevents
finding a solution in polynomial time for the linear program described
in (0.5).
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4. Combining the previous properties, we can follow: An integer linear
program as described in (0.2) can be exactly solved by its LP relaxation,
if the following property holds for its feasible set:

P ∩ {0, 1}n = vrtx(P ∩ [0, 1]n), (0.6)

i.e. when the vertices of the feasible set for the LP relaxation are exactly
the solutions feasible to the ILP. While P ∩ {0, 1}n ⊆ vrtx(P ∩ [0, 1]n)
holds for any polyhedron P , the opposite direction does not hold gen-
erally.

As the set P ∩ {0, 1}n can be equivalent for many different polyhedra P ,
these properties highlight the importance of the ILP problem description:
While many problem descriptions can be used for the same problem instance,
some yield a tighter LP relaxation than others, by allowing fewer fractional
vertices, which are infeasible for the original ILP.
This fact naturally leads to algorithms, which aim to restrict the polyhedron
P by removing non-integer elements, such that problems become easier to
solve through their LP relaxation:

Definition 0.4 (Cutting-plane Method). Consider the LP relaxation as de-
scribed in Definition 0.3. Algorithms, which aim to eliminate fractional ver-
tices from its feasible set P ∩ [0, 1]n through the addition/manipulation of
constraints describing the Polyhedron P , are referred to as cutting-plane
methods. Constraints added for this purpose are called cuts.

The first such cutting-plane method to solve ILPs was suggested in [6]
by Gomory. While methods using only Gomory cuts have limited use in
practice, due to poor convergence properties to the solution, they are still
widely used in modern branch-and-cut algorithms [7], where cuts are used
in a branch and bound framework, as a means to decrease the number of
branching nodes.

Since then, several other methods to generate cuts have been suggested, one
of which is closely related to a linearization technique we will employ in
the thesis – namely, lift-and-project cuts. A cutting-plane algorithm using
such cuts to solve mixed integer programs (MIP), which may contain both
integer and real variables, has been formulated in [8] and shown to outper-
form Gomory cuts. Similarly, lift-and-project cuts have been incorporated in
branch-and-cut algorithms [9].
In general, these methods aim to create a problem description, which results
in an LP relaxation that is as tight as possible, without being prohibitively
large to use.
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Besides the fairly straightforward LP relaxation, another commonly used
relaxation technique for optimization problems removes some constraints and
instead adds them with a cost to the objective function. We define it exem-
plary for a maximization ILP problem:

Definition 0.5 (Lagrange Relaxation). Let P be some polytope and Ax ≤ b
define a system of linear inequalities with A ∈ Rm,n, b ∈ Rm, for an ILP with
costs c ∈ Rn, given by

max
x∈P∩{0,1}n

⟨c, x⟩

subject to (s.t.) Ax ≤ b.
(0.7)

The relaxations to this problem, which we acquire by dualizing the con-
straints Ax ≤ b, i.e. omitting them and instead adding them to the objective
function of (0.7), are called Lagrange relaxations

max
x∈P∩{0,1}n

⟨c, x⟩+ ⟨λ, b− Ax⟩ =: D(λ), (0.8)

with (nonnegative) Lagrange multipliers λ ∈ Rm
≥0. The function mapping

all possible Lagrange multipliers to the relaxations (0.8) is defined as the
Lagrange dual function D(λ).

As it is favorable to find the tightest relaxation possible, one considers
the problem of finding the Lagrange multiplier λ that minimizes the up-
per bounds, which we acquire from solving the Lagrange relaxations. It is
called the Lagrange dual problem and defined as

min
λ∈Rm

≥0

D(λ) = min
λ∈Rm

≥0

max
x∈P∩{0,1}n

⟨c, x⟩+ ⟨λ, b− Ax⟩. (0.9)

The Lagrange dual problem (0.9) is equivalent to the primal relaxed prob-
lem, which is given by

max
x∈conv(P∩{0,1}n)

Ax≤b

⟨c, x⟩ (0.10)

and generally tighter than the LP relaxation, unless it is LP-tight, in which
case they are equivalent (see corollary 5.44 in [5]).

When considering a primal-dual algorithm later in this work, we will
incorporate the subgradient method to solve the Lagrange dual problem.
Thus, we briefly cover the definitions of subgradient and subgradient method
here, then state its convergence properties.
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Definition 0.6 (Subgradient). Let f be a convex function and x0 any point
on its domain. Then, a vector g is called a subgradient of f in x0, if

∀x ∈ dom(f) : f(x) ≥ f(x0) + ⟨g, x− x0⟩ (0.11)

holds and we denote the set of subgradients of f in x0 as ∂f(x0).

Subgradients can be used to find minima of convex functions, without
requiring them to be differentiable:

Definition 0.7 (Subgradient Method). Let x0 ∈ Rn be any starting vector
and f : Rn → R be a convex function. For steps t ∈ N0 and a sequence of
stepsizes {αt}∞t=0, which satisfies the criteria

lim
t→∞

αt = 0 and
∞∑
t=0

αt = ∞, (0.12)

the subgradient method describes the process

xt+1 = xt − αtg(xt), (0.13)

with subgradients g ∈ ∂f(xt).

As shown in [10, Thm. 3.2.2], the subgradient method converges to the
minima of convex functions, which are locally lipschitz-continuous around
their optimum, when choosing certain stepsizes αt. Generally, they should
always fulfill the diminishing stepsize rules (0.12) for the method to con-
verge.
In practice, choosing an appropriate stepsize is of great importance, but
the best choice of stepsizes may vary between problem types and instances.
Therefore, they usually have to be tested and adjusted for the problems at
hand, in order to ensure good performance of the subgradient method.

Following these definitions and basic properties of (integer) linear pro-
grams and their relaxations, as well as the subgradient method, we proceed
with the introduction of the MWIS problem.
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1 Introduction

In this section, we will lay the foundation for the upcoming work, by starting
out with the definition of the Maximum-Weight Independent Set Problem
(MWIS), its computational complexity and current approaches for solving
such problems.

Following that, we motivate the quadratic extension thereof in Section 2,
coining the term Quadratic Maximum-Weight Independent Set Problem (Q-
MWIS). As a preparation for the practical part, where we consider means
to efficiently solve Q-MWIS problems or get good approximations, we will
apply two different linearization methods. While the first, ”trivial” lineariza-
tion simply adds variables and enforces them to be equal to the quadratic
terms through extra constraints, the second technique also aims to tighten
the LP relaxation in the process – without losing sight of the feasibility in
practical settings. To achieve this, we apply a reformulation-linearization
technique (RLT), suggested by Sherali-Adams in [2] and clear the outcome
of redundant constraints for a more concise linearization of the Q-MWIS
problem.

We finish in Section 3, by considering ways how to solve Q-MWIS problems
in practice. The initial idea is to incorporate the previously constructed
linearization in a primal-dual algorithm, where we aim to solve the corre-
sponding Lagrange dual problem through the subgradient method and use
the approximate solutions it supplies for primal heuristics. As this proves to
be unlikely to provide an efficient solution algorithm, we briefly contemplate
on alternatives, involving off-the-shelf ILP solvers.
For the latter, we test which of the different problem (re-)formulations we
construct in Section 2 performs best, when used with the optimization soft-
ware Gurobi [3], on problems of varying size and structure.

1.1 The Maximum-Weight Independent Set Problem
(MWIS)

As indicated by the name, the Maximum-Weight Independent Set (MWIS)
problem describes the problem of finding an independent subset of elements
with maximum weight/cost. Formally, it can be defined as an integer linear
programming (ILP) problem:

Definition 1.1 (Maximum-Weight Independent Set). Let [n] := {1, . . . , n}
be the numbering for the elements we can choose from, which we will refer
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to as labels and Kj be subsets thereof, with j ∈ [m] indexing the m so-called
conflict sets. If an element with label i is chosen, the corresponding binary
decision variable xi is set to 1 and the cost ci ∈ R is added to the total
resulting cost.
In total, for a cost vector c ∈ Rn, the maximization problem is given by

max
x∈{0,1}n

⟨c, x⟩ = max
x∈{0,1}n

n∑
i=1

cixi (1.1)

s.t.
∑
i∈Kj

xi ≤ 1, ∀j ∈ [m]. (1.2)

We can see from the constraints in (1.2) that feasible solutions can only
pick at most one of the labels contained in each conflict set. A subset of all
labels S ⊆ [n], with xi = 1 for all i ∈ S and zero otherwise, which fulfills the
constraints (1.2) for all conflict sets Kj, is called an independent set.

To sum it up: In order to solve these problems, we have to find such in-
dependent sets not violating the conflict set constraints, while maximizing
cost. It is evident that if ci < 0 for any label i ∈ [n], xi = 0 holds for any
optimal solution. Therefore, these terms could theoretically be omitted and
the corresponding decision variables set to 0 by default.

Remark 1.2 (Conflict set representations). It should be mentioned that
the MWIS problem usually does not have a unique set of conflict sets,
but can have different conflict set representations. For example, three sets
K1 = {1, 2}, K2 = {2, 3} and K3 = {1, 3} could equivalently be represented
by K = {1, 2, 3} and vice versa. While these differing formulations don’t
change the set of feasible solutions for the original integer linear program,
they do affect the set of feasible solutions for the corresponding LP relaxation,
as we have noted in the preliminaries.

We observe the following statement on conflict set representations, which
can be seen as a generalization of Remark 1.2:

Proposition 1.3. Let Kj with j ∈ [m], and K ⊆ [n] be conflict sets with
non-zero n,m ∈ N and Kj ⊆ K, ∀j ∈ [m]. If all label pairs contained in K
are also both contained in some conflict set Kj, i.e. if

∀i, k ∈ K, ∃j ∈ [m] : i, k ∈ Kj (1.3)

holds, the following inequalities are equivalent for binary decision variables
xi ∈ {0, 1}, ∀i ∈ [n]:∑

i∈K

xi ≤ 1 ⇔
∑
i∈Kj

xi ≤ 1, ∀j ∈ [m]. (1.4)
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Proof. ” ⇒ ” : From Kj ⊆ K, ∀j ∈ [m] and the decision variables being
binary (i.e. nonnegative), we can immediately see that∑

i∈Kj

xi ≤
∑
i∈K

xi ≤ 1, ∀j ∈ [m]. (1.5)

” ⇐ ” : (Proof by contradiction) Assume that
∑

i∈K xi > 1 holds. Since
the decision variables are binary, we have at least one label pair i, k ∈ K,
with xi = xk = 1 and i ̸= k. From condition (1.3), we know that there also
exists some j ∈ [m], such that i, k ∈ Kj, resulting in

∑
i∈Kj

xi > 1, since

xi ≥ 0, ∀i ∈ [n]. This contradicts the assumption
∑

i∈Kj
xi ≤ 1, ∀j ∈ [m]

and
∑

i∈K xi ≤ 1 follows.

Proposition 1.3 can be used as a means of constructing a single larger
conflict set, in place of multiple smaller ones. This both yields a tighter LP-
relaxation and simultaneously reduces the number of constraints, resulting
in a preferable MWIS problem formulation.

Remark 1.4 (Graph theoretic interpretation). The MWIS problem can also
be seen as a graph theoretic problem:
Consider a graph (V , E), with set of vertices V and edges E connecting the
vertices. Additionally, every vertex has a weight/cost attached to it. The
problem then consists of finding the subset S of V that sums to the largest
total weight, such that there is no edge connecting any of its vertices. In
this scenario, each edge can be thought of as a conflict set containing two
elements, namely, the vertices it connects. Alternatively, the conflict sets can
be constructed as clique edge covers, resulting in fewer, but larger conflict
sets. It may be noted that the subset S also forms an independent set in the
graph (V , E).

In the following work, we will also use an alternative way to formulate the
constraints (1.2), replacing the inequality constraints with equations. When
incorporating quadratic terms later on, this will make the constraints easier
to work with and allow us to connect the quadratic MWIS problem to other
similar combinatorial optimization problems.

To this end, we will introduce slack decision variables xn+1, . . . , xn+m with
zero costs cn+1, . . . , cn+m to (1.1) – one for every constraint. Each label
to these slack elements is added to exactly one conflict set of the original
formulation, resulting in new conflict sets K ′

j := Kj ∪ {n+ j} for j ∈ [m].

Definition 1.5 (MWIS with equality constraints). Let xn+1, . . . , xn+m be
additional decision variables with costs cn+1 = · · · = cn+m = 0 and define
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the conflict sets K ′
j = Kj ∪ {n + j}, ∀j ∈ [m]. The equality constraint

reformulation of the MWIS problem described in Definition 1.1 reads:

max
x∈{0,1}n+m

⟨c, x⟩

s.t.
∑
i∈K′

j

xi = 1, ∀j ∈ [m].
(1.6)

Since they are unweighted and exactly one such slack variable is added
per conflict set, it can be seen that the the objective function value, as well
as the optimal solution to the problem, remain unchanged.

Indeed, we observe that depending on the summed decision variables in the
underlying conflict set, the slack variables are set to zero or one, allowing us
to turn the conflict set inequalities into equations:

∀j ∈ [m] : xn+j =

{
0, if

∑
i∈Kj

xi = 1,

1, otherwise.
(1.7)

1.2 Computational Complexity of the MWIS problem

In order to solve MWIS problems, one has to find an independent set of max-
imum possible weight. Considering the exponential 2n possible combinations
of n decision variables, it can be seen that brute-force algorithms are at most
feasible for small-scale problems. Indeed:

Proposition 1.6. The MWIS problem is NP-hard in the general case.

Proof. As noted in [11], the independent set decision problem is NP-complete.
For a graph G = (V , E), the problem consists of answering the question,
whether there is an independent subset V ′ ⊆ V with cardinality |V ′| ≥ J for
some positive integer J ≤ |V|. It is readily observed that the independent
set problem can be reduced to the MWIS problem in polynomial time, using
its graph theoretic interpretation mentioned in Remark 1.4:

Let x1, . . . , xn be the decision variables for the n = |V| elements of the
MWIS problem and set the costs of all elements to 1. The m = |E| conflict
sets are defined by the edges:

∀j ∈ [m] : Kj = {k, l}, for (vk, vl) ∈ E . (1.8)
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In particular, an independent set in the MWIS problem corresponds to an
independent set in the independent set problem and vice versa. Because the
costs are identical, an independent set with maximum cost is also a maximum
independent set (i.e., the largest independent set in V). Additionally, as the
costs are 1 for every element, the optimal value of the MWIS problem we
described is equal to the cardinality of the maximum independent set Jmax.
Therefore, the answer to the independent set problem is ”yes”, if J ≤ Jmax

and ”no” otherwise.
Since the NP-complete independent set problem thus can be reduced to the
MWIS problem, the latter is shown to be NP-hard.

Despite it not being proven, due to the NP-hardness of the MWIS problem
it is unlikely that there exists a polynomial time algorithm that can exactly
solve all problem instances, as this would imply that P = NP.

Furthermore, it has been shown in [12] that (under the assumption that
NP ̸=ZPP) there is no polynomial time algorithm that can approximate the
max-clique problem for a graph with n vertices within a factor of n1−ϵ, for
some constant ϵ > 0. This means that for the maximum clique size Xopt,
there is no polynomial time algorithm that returns at most Xopt and at least
Xopt

n1−ϵ . Similar results are derived for an approximation factor of n1/2−ϵ, if one
instead assumes that P̸=NP.
As the max-clique problem can be easily transformed to the unweighted max-
imum independent set problem by complementing the graph – i.e. connecting
all vertices that weren’t connected by an edge previously and removing the
old edges – these theorems extend to the MWIS problem.

In summary, we can see that the MWIS problem is both hard to solve
exactly and to approximate. However, there are different approaches at-
tempting to do so as efficiently as possible.

1.3 Finding exact or approximate solutions for the
MWIS problem

Some current algorithms that aim at exactly solving general MWIS problems
employ branch-and-bound or branch-and-reduce techniques [13, 14]. When
exact methods are infeasible due to the large scale of a problem instance,
heuristic algorithms using local search methods can be used to find approxi-
mate solutions [15].

In addition to this, some algorithms are tailored to special MWIS problem
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classes, which can be solved in polynomial time. These classes include claw-
free [16, 17], fork-free [18] or P6-free graphs [19].

Aside from these algorithms specifically tailored to the MWIS prob-
lem, one may also take a more general approach using ILP solvers, such as
Gurobi [3]. The efficiency of such solvers heavily depends on the formulation
of the constraints used in the problem description. Indeed, as mentioned in
the preliminaries and Remark 1.2, there are many ways to describe the same
problem, resulting in different amounts of constraints with varying tightness
for the corresponding LP relaxation.

To illustrate this, consider the following basic example:

Example 1.7. Let K1 = {1, 2}, K2 = {2, 3} and K3 = {1, 3} be a conflict
set representation for a MWIS problem with costs c1 = 2, c2 = 2 and c3 = 3.
As previously described, these three conflict sets could be replaced by a single
one, namely K̂ = {1, 2, 3}. We can see that there is a unique independent
set of maximum cost for both representations, namely the single element set
{3} with a cost of 3. But, while both yield the same result for the original
integer linear programming problem, they result in different LP relaxations.
The relaxations are given by

max
x∈[0,1]3

3∑
i=1

cixi, subject to (s.t.)

x1 + x2 ≤ 1,

x2 + x3 ≤ 1,

x1 + x3 ≤ 1

(1.9)

and

max
x∈[0,1]3

3∑
i=1

cixi, s.t.

x1 + x2 + x3 ≤ 1

(1.10)

respectively.

It is evident that the single constraint in (1.10) implies all three constraints
of (1.9), but the same doesn’t hold in reversed order: For instance, values
x1 = x2 = x3 = 0.5 would be a feasible solution for the LP relaxation in (1.9),
while they’re infeasible for the single constraint LP relaxation. This implies
that the relaxation in (1.10) is strictly tighter for the original ILP, than the
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one described in (1.9).

One can also observe this, when solving these linear programs: The LP
relaxation (1.9) yields an optimal value of 3.5 for the optimal solution given
by x1 = x2 = x3 = 0.5, while the linear program in (1.10) is a tight relaxation
with an optimal value of 3, and optimal solution x1 = x2 = 0, x3 = 1. As
such, the single constraint representation of the problem is clearly preferable
here, when solving the integer linear programming problem using its LP
relaxation.

Remark 1.8 (Connection of the constraint formulation and LP relaxation).
As illustrated in Example 1.7, the use of appropriate constraints is of rele-
vance, when trying to solve MWIS or ILP problems through their LP relax-
ation, since they affect the tightness thereof. In order to eliminate fractional
solutions from the LP relaxation, one may resort to adding inequalities, which
are violated by them, without affecting the integer solutions. As mentioned
in the preliminaries, constraints added for this purpose are referred to as cuts
and there are several methods that allow the building of progressively tighter
relaxations – at the cost of introducing more constraints.

One of such methods was described in [2] by Sherali and Adams, where
they employ a reformulation-linearization technique (RLT), which adds con-
straints akin to the ones that were later used in the lift-and-project cutting
plane method introduced in [8]. Through multiplication of the constraints
with certain polynomials and subsequent linearization, relaxations of vary-
ing tightness can be constructed, resulting in a hierarchy of relaxations. This
hierarchy ranges from the basic LP relaxation of the original problem to the
convex hull of the feasible solutions for the ILP problem – therefore, solving
the latter would also solve the ILP problem.
In practice, constructing the tightest relaxation of the hierarchy in such a
way is infeasible for real-world applications, considering the exponentially in-
creasing number of constraints. However, we will use this technique later on,
constructing a lower-ranking relaxation in order to tighten the constraints,
while retaining efficiency.

After this brief introduction of the MWIS problem, its computational
complexity and current means of approaching such problems, we proceed
with the introduction of its quadratic extension.
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2 Quadratic Maximum-Weight Independent

Set (Q-MWIS) Problems

While MWIS problems only contain a linear cost term for every decision
variable by itself, some problems require the modeling of pairwise relations,
such as the quadratic cost subproblems arising in the work of [1], where they
address multi-graph matching problems. To this end, we will augment the
MWIS problem with quadratic cost terms, transforming it from an integer
linear programming problem into a quadratic integer programming (QIP)
problem.

Similarly to the MWIS problem (see definitions 1.1, 1.5), we will define an
inequality and equality constraint formulation – and mostly proceed working
with the latter.

Definition 2.1 (Quadratic MWIS). Let [n] be the set of labels, Kj ⊆ [n]
with j ∈ [m] be m conflict sets and [[n]]2 := {ik | i, k ∈ [n], i < k} be the
set of (ordered) label pairs. For a subset NZ ⊆ [[n]]2 thereof, the Quadratic
Maximum-Weight Independent Set (Q-MWIS) problem is defined as

max
x∈{0,1}n

n∑
i=1

cixi +
∑

ik∈NZ

cikxixk

s.t.
∑
i∈Kj

xi ≤ 1, ∀j ∈ [m],
(2.1)

with ci, cik ∈ R being unary and pairwise costs respectively, for i ∈ [n] and
ik ∈ NZ .

When a label pair ik ∈ [[n]]2 is contained in some conflict set, a solution
setting both to 1 can not be feasible for the problem. As such, these terms
cikxixk are omitted from the objective function by setting cik = 0 and NZ

can be seen as a representation of label pairs with non-zero pairwise costs
cik.

Analogously to the MWIS problem, we can reformulate Q-MWIS problems
to include only equality constraints, without affecting its optimal solution:

Definition 2.2 (Q-MWIS with equality constraints). We introduce m slack
decision variables xn+1, . . . , xn+m to the Q-MWIS problem (2.1). Their unary
and pairwise costs are zero: cn+1 = · · · = cn+m = 0 and cik = 0, if i > n or
k > n. Additionally, let K ′

j = Kj ∪ {n + j}, ∀j ∈ [m] be the new conflict
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sets. The equality constraint reformulation of the Q-MWIS problem is then
given by:

max
x∈{0,1}n+m

n∑
i=1

cixi +
∑

ik∈NZ

cikxixk

s.t.
∑
i∈K′

j

xi = 1, ∀j ∈ [m].
(2.2)

Note that we omitted the slack decision variable indices in the sums of
the objective function of (2.2), since their unary and pairwise costs are set
to zero anyways.
Like in the MWIS problem equality constraint reformulation, these slack
variables don’t affect the original decision variables or the objective function.
The value assigned to them depends on the values of the decision variables
in the underlying conflict sets, as described in (1.7).

Additionally, we define the following form, in which Q-MWIS problems
are usually considered in practice:

Definition 2.3 (Q-MWIS standard form). A Q-MWIS problem with set of
labels [n] and conflict sets Kj with j ∈ [m], is said to be in standard form, if
it holds that

∀i ∈ [n], ∃j ∈ [m] : i ∈ Kj, (2.3)

i.e. all labels are contained in at least one conflict set.

Remark 2.4 (Transformation to standard form). It is clear that the decision
variables are unconstrained, when their label isn’t contained in some conflict
set.
We make the following observations for such decision variables xi, with i ∈ [n]
and ∄j ∈ [m] : i ∈ Kj:

� If the cost terms connected to label i, namely the unary costs ci and
pairwise cost terms csi, cit, ∀s, t ∈ [n] with s < i and t > i, are all
nonnegative, with at least one term strictly greater zero, all optimal
solutions will contain label i, i.e. have xi = 1.

� Similarly, if all cost terms associated with i are nonpositive, with at
least one term strictly smaller than zero, all optimal solutions will have
the decision variable xi = 0.

� If all costs connected to label i were zero, the variable choice doesn’t
affect the optimal solution and xi can be chosen at random.
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Such decision variables can be fixed in the Q-MWIS problem, as a part of
the optimal solution already is trivially known.

However, if the costs associated with labels i are both negative and positive,
the optimal choice of xi is non-trivial. Indeed, it corresponds to the quadratic
unconstrained binary optimization (QUBO) problem, which is known to be
NP-hard and can be used to describe many combinatorial optimization prob-
lems (see e.g. [20]).

In this case, the Q-MWIS problem could be transformed to standard form,
by adding conflict sets Kj+1, . . . , Kj+N with cardinality 1, which each con-
tain one of the N labels that aren’t contained in any conflict set. Effectively,
this adds the trivially holding bounding constraints xi ≤ 1 to our Q-MWIS
problem, for all such labels i. The reason for considering these seemingly
pointless pseudo conflict set constraints will become evident later in this
work, when we apply linearization techniques on Q-MWIS problems that are
not necessarily in standard form.

Remark 2.5 (Connection to QAP and MAP-Inference). It can be seen that
the Q-MWIS problem is tightly connected to other known combinatorial op-
timization problems, such as the quadratic assignment problem (QAP) and
the maximum a posteriori (MAP) inference problem for graphical models.

For the QAP, which has several similar formulations and was originally in-
troduced in [21], this is most readily seen with the format used in [22], where
it is given in form of a quadratic integer program:

min
(xij)1≤i,j≤n∈Rn×n

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

cijklxikxjl +
n∑

i,j=1

bijxij, (2.4)

s.t.
n∑

i=1

xij = 1, ∀j = 1, . . . , n,

n∑
j=1

xij = 1, ∀i = 1, . . . , n

and xij ∈ {0, 1}, ∀i, j = 1, . . . , n,

(2.5)

with cost terms cijkl ∈ R, ∀i, j, k, l ∈ [n] and bij ∈ R, ∀i, j ∈ [n]. Since
the objective function (2.4) is quadratic and the assignment constraints (2.5)
directly present 2n conflict set like constraints of a specific form, its format
is very close to the Q-MWIS problem with equality constraints as defined
in (2.2). The minimization problem could be turned into a maximization, by
simply switching the sign of the costs.
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Similarly, the MAP-inference problem very closely matches the Q-MWIS
problem with equality constraints. For a graphical model (G,YV , θ) with
graph G = (V , E) consisting of nodes V and edges E , space of labelings YV
and cost vector θ, the MAP-inference problem is given by

min
y∈YV

∑
u∈V

θu(yu) +
∑
uv∈E

θuv(yu, yv), (2.6)

where θu(·) and θuv(·) are unary and pairwise cost functions respectively,
matching costs to labels for all nodes u ∈ V and edges uv ∈ E .
To transform this into a Q-MWIS problem, one may assign decision variables
x
(u)
s , ∀u ∈ V and ∀s ∈ Yu, where Yu represents the set of labels for node u

– i.e., each decision variable x
(u)
s corresponds to whether label s is selected

in node u, or not. They can be combined with the unary and pairwise cost
terms of the graphical model, yielding a quadratic objective function with
the same function value as the one of (2.6).

In order to enforce that the choices for x
(u)
s result in a labeling, i.e. exactly

one label is picked for each node, equality constraints can be added, resulting
in the problem formulation

min
x∈{0,1}N

∑
u∈V

∑
s∈Yu

θu(s)x
(u)
s +

∑
uv∈E

∑
s∈Yu

∑
t∈Yv

θuv(s, t)x
(u)
s x

(v)
t ,

s.t.
∑
s∈Yu

x(u)
s = 1, ∀u ∈ V ,

(2.7)

where N =
∑

v∈V |Yv| is the total number of labels of all nodes. Just as with
the QAP, the problem (2.7) can be turned into maximization by considering
costs with flipped signs, closely matching Q-MWIS problem with equality
constraints.

However, the MAP-inference problem could also be transformed into a Q-
MWIS problem with inequality constraints: To this end, we would have to
enforce the costs to be negative, by subtracting a large enough constant from
all unary and pairwise costs. While this affects the optimal value of the ob-
jective function, the optimal solution is unchanged. All costs would become
strictly positive on changing their sign and considering a maximization prob-
lem instead. Lastly, due to the non-intersecting structure of the conflict set
constraints (2.7) and since all costs are positive, the equality constraints can
be replaced by inequalities, without affecting the optimal solution. Solving
the thus constructed Q-MWIS problem with inequality constraints would
also yield an optimal solution for the original MAP-inference problem.

Following this introduction of the Q-MWIS problem, we proceed with
contemplations on different Q-MWIS problem reformulations, which may
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prove useful in the practical part thereafter – namely ones that transform
the quadratic integer programming problem into a linear one.

2.1 The ”trivial” Q-MWIS linearization

To reformulate a Q-MWIS problem as an integer linear program, one has to
linearize the quadratic pairwise cost terms and add appropriate constraints,
such that the outcome is equivalent to the original problem.

The most straightforward way of doing so, would be to introduce auxiliary
variables yik = xixk for all ik ∈ NZ and add constraints, which guarantee
that

∀ik ∈ NZ : yik =

{
0, if xi = 0 or xk = 0,

1, otherwise.
(2.8)

A Q-MWIS problem with equality constraints, as described in Definition 2.2,
linearized in such a way, results in the following problem description:

Example 2.6 (Trivial linearization of Q-MWIS). We combine the pairwise
cost term factors xixk from the objective function of (2.2) into an auxiliary
decision variable yik for all ik ∈ NZ and add the constraints needed, such
that yik = xixk is guaranteed.
Note that for an unambiguous index labeling, we consider label pairs ik ∈ [[n]]2

to always satisfy i < k, by definition of [[n]]2.
This yields the following ILP:

max
x∈{0,1}n+m

y∈{0,1}|NZ |

n∑
i=1

cixi +
∑

ik∈NZ

cikyik

s.t.
∑
i∈K′

j

xi = 1, ∀j ∈ [m],

yik ≤ xi, ∀ik ∈ NZ ,

yik ≤ xk, ∀ik ∈ NZ ,

yik ≥ xi + xk − 1, ∀ik ∈ NZ .

(2.9)

In total, it contains n +m + |NZ | variables and m + 3|NZ | constraints, not
including the integrality and bounding constraints on the variables.

Obviously, an equivalent linearization can be applied to the original Q-
MWIS problem with inequality constraints, but we proceed focusing on this
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one for now.
We note that the size of this linearization mostly depends on the cardinal-
ity of NZ ⊆ [[n]]2, which can contain up to n(n−1)

2
label pairs. In the worst

case, this nearly squares the number of constraints and greatly increases the
number of variables – with the upside of removing the quadratic objective
function terms, thus allowing ILP methods and algorithms to be applied.

To confirm the equivalence of this linearization (2.9) to the original prob-
lem, we note the following:

Proposition 2.7. For any x ∈ {0, 1}n+m feasible to the QIP problem de-
scribed in (2.2), there exists a tuple (x, y), with y ∈ {0, 1}NZ , feasible to the
ILP problem in Example 2.6 and vice versa. The solutions yield the same
value in the objective functions of the respective problems.

Proof. Firstly, we can see that any tuple (x, y), which is a feasible solution
to the ILP problem (2.9), contains the solution x, feasible to the original
QIP problem, since the conflict set constraints

∑
i∈K′

j
xi = 1 are fulfilled,

∀j ∈ [m].
As we have noted for any yik satisfying the inequality constraints of (2.9), its
value is 1, if xi = xk = 1 and 0, if xi or xk are 0, taking the same value as the
quadratic term xixk when the decision variables are binary. It follows that
for any x, which is a feasible solution to the QIP problem (2.2), there exists
exactly one y ∈ {0, 1}NZ , such that the tuple (x, y) satisfies the inequality
constraints of the ILP problem and is therefore a feasible solution to it. Since
these yik take the same value as the term xixk, ∀ik ∈ NZ , when the decision
variables are binary, the objective function value of x for the QIP problem
is identical to the one of (x, y) for the ILP problem.

While this linearization is very straightforward, it’s not necessarily the
most efficient way of formulating the problem – both, in terms of number of
constraints and tightness of the corresponding LP relaxation. It is not clear,
whether removing the quadratic terms really is worth the vastly increased
complexity (in terms of number of constraints and variables) for problems
with large sets NZ .

We have repeatedly noted, how the more closely the feasible set of the LP
relaxation matches the convex hull of feasible solutions to the ILP problem,
the better are the approximate solutions one may acquire from it. Therefore,
we will consider another approach in the following subsection, suggested by
Sherali and Adams in [2], which additionally aims to tighten the LP relax-
ation of the resulting integer linear programming problem during the refor-
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mulation process.

2.2 The Sherali-Adams linearization for Q-MWIS prob-
lems

As mentioned in Remark 1.8: When the goal is to construct tighter LP relax-
ations, one may consider the Sherali-Adams relaxation hierarchy described
in [2]. It allows for a tightening of the basic LP relaxation to various degrees,
by using a reformulation-linearization technique (RLT).

The general procedure for ILP problems is as follows:
Consider any integer linear program with feasible set X and n variables
x ∈ {0, 1}n, where X is defined by a number of inequality, equality and
integrality constraints:

max
x∈X

⟨c, x⟩, with feasible set (2.10)

X =

{
(x1, . . . , xn) ∈ {0, 1}n

∣∣∣∣ n∑
j=1

αrjxj ≥ βr, r = 1, . . . , R1;

n∑
j=1

arjxj = br, r = 1, . . . , R2

}
.

(2.11)

Let d ∈ [n] and denote certain polynomials of order d by Fd(J1, J2), where
J1, J2 ⊆ [n] are non-intersecting subsets covering d elements of [n] when
joined, i.e. J1 ∩ J2 = ∅ and |J1 ∪ J2| = d. They have the following form:

Fd(J1, J2) =

(∏
j∈J1

xj

)(∏
j∈J2

(1− xj)

)
. (2.12)

Any pair of subsets (J1, J2) satisfying the above conditions is said to be of
order d and Nd is the total number of such subset pairs.
Using these definitions, we can construct relaxations XP d for any d ∈ [n], by
applying the following steps:

1. Multiply all R1 inequality constraints and R2 equality constraints of X
with each polynomial Fd(J1, J2) individually. This results in a number
of (R1 +R2) ·Nd mostly non-linear (in-)equalities.

2. ForD := min{d+1;n}, addND constraints FD(J1, J2) ≥ 0 for all subset
pairs (J1, J2) of order D. Note: This is akin to multiplying the bounding
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constraints 0 ≤ xi ≤ 1, ∀i ∈ [n] with all polynomials Fd(J1, J2) for all
subsets (J1, J2) of order d.

3. Lastly, as a means to linearize the previously constructed (in-)equalities
in step 1 and 2, we first apply the relationship x2

i = xi or equivalently
xi(1 − xi) = 0 ∀i = 1, . . . , n, which holds trivially for all ILPs with
binary decision variables. The remaining non-linear terms of the form∏

j∈J xj, for some subset J ⊆ [n] with |J | ≥ 2, are substituted by
variables wJ . Polynomials Fd(J1, J2) reformulated in such a way are
denoted as fd(J1, J2).

The set of variables (x,w) ∈ Rn ×Rmd fulfilling these constraints, where md

depends on d and n, is defined as Xd and given by:

Xd =

{
(x,w)

∣∣∣∣for all Nd subset pairs (J1, J2) of order d, it holds that(∑
j∈J1

αrj − βr

)
fd(J1, J2) +

∑
j∈[n]\(J1∪J2)

αrjfd+1(J1 ∪ {j}, J2) ≥ 0,

∀r = 1, . . . , R1,(∑
j∈J1

arj − br

)
fd(J1, J2) +

∑
j∈[n]\(J1∪J2)

arjfd+1(J1 ∪ {j}, J2) = 0,

∀r = 1, . . . , R2

and for all ND subsets (J1, J2) of order D = min{d+ 1, n},

it holds that: fD(J1, J2) ≥ 0

}
.

(2.13)

Then, the relaxation for our ILP problem described in (2.10) and (2.11) is
acquired by projecting the (x,w) tuples of the set Xd to x, i.e. they are given
by

XP d = {x | (x,w) ∈ Xd} . (2.14)

In [2, Thm. 1, 3], it is proven that the relaxations constructed in such a
way form a hierarchy from the basic LP relaxation to the convex hull of X:

X0 ≡ XP 0 ⊇ XP 1 ⊇ · · · ⊇ XPn ≡ conv(X), (2.15)

where X0 denotes the feasible set of the basic LP-relaxation and conv(X) is
the convex hull of X. The equivalence of X0 and XP 0 follows, when setting
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(J1, J2) = (∅, ∅) as the only subset pair of order 0 and f0(∅, ∅) = 1.

We can see that, since XPn is equal to the convex hull of X, solving the
corresponding relaxed problem would also solve the original ILP problem
(see (0.5)). However, it is evident that solving larger ILP problems this
way is infeasible, as the number of constraints grows linearly in the number
of subset pairs (J1, J2) of order d and D, which is equal to

(
n
d

)
2d factors.

Nevertheless, Sherali-Adams relaxations of lower order might be of use as a
tighter alternative to the LP relaxation of ILP problems.

Remark 2.8. It should be stressed that the constraints acquired through the
previously described polynomial multiplications and nonnegativity inequal-
ities don’t remove (integer) solutions from the original problem or add any
to it.
As proven in [2, Cor. 1], a tuple (x,w) with binary variables x ∈ {0, 1}n is
an element of Xd, d ∈ [n], if and only if x ∈ X and the linearized terms
all correspond to their quadratic counterparts: wJ =

∏
j∈J xj, for all sets J

with |J | = 2, . . . , D for D = min{d + 1, n}. Indeed, if the constraints were
to remove any feasible solution to X, this would conflict with the hierarchy
described in (2.15).

Intuitively, this becomes evident when realizing that the multiplication with
all such factors Fd(J1, J2) essentially amounts to a multiplication of the con-
straints with a nonnegative factor, which can only take the values 0 or 1 in
the case of binary variables. Each polynomial therefore ”fixes” constraints
to only consider, what happens when the d decision variables with indices
in J1 ∪ J2 are xi = 1 for i ∈ J1 and xj = 0 for j ∈ J2. Hence, terms xi

and (xj − 1) are also termed bound-factors in [23]. This also explains the
requirement of sets J1 and J2 to be non-intersecting, since otherwise the pro-
cess would essentially just amount to a multiplication with 0, which serves
no purpose.

Instead, raising the polynomial order of constraints allows this procedure to
apply the relationship x2

i = xi,∀i ∈ [n] to the constraints, which obviously
holds for binary values xi, but is violated by any non-binary variable. It is
this step, which yields the tightening of the relaxation.

We also note the following:

Remark 2.9 (Interpretation as lift-and-project method). The lift-and-project
cutting plane method suggested in [8] is similar to the RLT by Sherali and
Adams, in that it uses similar bound-factors xi, (1−xi) in the lifting process.

27



However, they are only applied for one variable at a time.
More generally, we can see that the RLT by Sherali-Adams works by lifting
the dimensionality of the original problem, through replacement of higher
order terms with linear variables. The resulting problem can then be solved
and projected back to the space of original decision variables.

Example 2.10. As an illustration of the use of the Sherali-Adams transfor-
mations on a minimal example, consider the feasible set of an ILP

X =
{
(x1, x2) ∈ {0, 1}2 | 2x1 + 2x2 ≥ 1

}
. (2.16)

Since X contains exactly the three points (0, 1), (1, 0), (1, 1), its convex hull
is given by

conv(X) =
{
(x1, x2) ∈ R2 | x1 + x2 ≥ 1, x1 ≤ 1, x2 ≤ 1

}
, (2.17)

the convex combination of those points.

Firstly, the LP-relaxation of X is equivalent to XP 0 and acquired by relaxing
the integrality constraints of X:

XP 0 ≡ X0 =
{
(x1, x2) ∈ [0, 1]2 | 2x1 + 2x2 ≥ 1

}
. (2.18)

To construct the set X1 according to the Sherali-Adams scheme, the single
inequality constraint of X has to be multiplied by all polynomials Fd(J1, J2)
of order d = 1, namely x1, x2, (1− x1) and (1− x2). Exemplary for the first
polynomial x1 we get:

2x2
1 + 2x2x1 ≥ x1. (2.19)

Using the relationship x2
1 = x1 and substituting the leftover non-linear term

x1x2 = w12 yields:

x1 + 2w12 ≥ 0. (2.20)

A similar process with the other polynomials of order 1 results in the following
constraints:

x2 + 2w12 ≥ 0,

x1 + 2x2 − 2w12 ≥ 1,

2x1 + x2 − 2w12 ≥ 1.

(2.21)
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Additionally, the nonnegativity constraints for polynomials F2(J1, J2) have
to be included, ∀(J1, J2) of order 2:

w12 ≥ 0,

x1 − w12 ≥ 0,

x2 − w12 ≥ 0,

1− x1 − x2 + w12 ≥ 0.

(2.22)

Then X1 is given by the set of tuples (x1, x2, w12) ∈ R3 fulfilling above
constraints (2.20)-(2.22). X2 can be constructed in a similar fashion, applying
the same steps for d = 2. Its projected set would be equivalent to the convex
hull of X.

Figure 1: Illustration of the example sets. X is given by the points (0, 1), (1, 0)
and (1, 1), the convex combination of which yields the convex hull conv(X). It is
a subset of the LP relaxation X0 and the projected set XP 1 . In total, it is evident
that conv(X) ⊆ XP 1 ⊆ X0.

Note: All constraints of X0, i.e. the single set constraint and the bound-
ing constraints on x1 and x2, can be acquired by combining constraints of
X1, which implies XP 1 ⊆ X0.
However, we can see that X0 ⊈ XP 1 , since the constructed constraints elimi-
nate possible solutions fromX0: For example, x1 = 0, x2 = 0.5 is a feasible so-
lution for X0, but not for XP 1 , since there is no tuple (0, 0.5, w12) fulfilling the
constraints of X1. This can be seen due to the fact that the second constraint
in (2.21) and the first nonnegativity constraint in (2.22) imply w12 = 0, which
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violates the third constraint of (2.21), as (x1, x2, w12) = (0, 0.5, 0) yields the
contradiction 0.5 ≥ 1.
Additionally, it is evident that XP 1 is not equivalent to the convex hull of X:
While the tuple (x1, x2, w12) = (1

3
, 1
3
, 0) satisfies the constraints (2.20), (2.21)

and (2.22), meaning that (1
3
, 1
3
) ∈ XP 1 , it is not an element of the convex

hull of X, since it violates the constraint x1 + x2 ≥ 1.
By considering the constraints for w12 = 0 and how they move when increas-
ing it, we can see that the projected set XP 1 is given by:

XP 1 =
{
(x1, x2) ∈ R2 | 2x1 + x2 ≥ 1, x1 + 2x2 ≥ 1, x1 ≤ 1, x2 ≤ 1

}
.

(2.23)
The intersection of its first two constraints reveals an extra (non-integer)
vertex not present in the convex hull of X, namely (1

3
, 1
3
). This implies that

the convex hull of X is strictly contained in XP 1 , but not equivalent to it.

After this description of how the Sherali-Adams reformulation-linearization
technique works, we will apply this method to attempt to build a more ef-
ficient linearization of the Q-MWIS problem – both in terms of number of
constraints and tightness of the corresponding LP relaxation.

Constructing a linearization of the Q-MWIS problem with the
Sherali-Adams scheme

The idea behind incorporating the Sherali-Adams method in the construc-
tion of an efficient linearization of the Q-MWIS problem, comes from the fact
that both include quadratic terms, which will subsequently be linearized. For
the Q-MWIS problem (2.2) these terms are in the objective function, while
the RLT by Sherali-Adams includes them in the constraints.
This allows us to linearize the quadratic terms in the objective function and
constraints simultaneously, while tightening the latter – resulting in a lin-
earization for our QIP problem, whose LP relaxation potentially performs
better than the one of the trivial linearization described in Example 2.6. As
previously mentioned, the number of added constraints for the sets Xd in-
creases with the number of subset pairs of order d, given by

(
n
d

)
2d, exhibiting

an exponential growth in d. In order to retain the feasibility of our approach
for problems of larger scale, we will therefore focus on the Sherali-Adams
relaxation of degree d = 1.

We will construct the Sherali-Adams linearization for the general Q-
MWIS problem with equality constraints, introduced in Definition 2.2, which
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is given by

max
x∈{0,1}n+m

n∑
i=1

cixi +
∑

ik∈NZ

cikxixk

s.t.
∑
i∈K′

j

xi = 1, ∀j ∈ [m],
(2.24)

for a conflict set representation {K ′
j}j∈[m], unary cost terms ci ∈ R, ∀i ∈ [n]

and pairwise costs cik ∈ R, ∀ik ∈ NZ ⊆ [[n]]2. Most of the following steps
can be equivalently applied to the original Q-MWIS problem with inequality
constraints, though.

In order to construct the set X1, as defined in (2.13), we start out
by multiplying all conflict set constraints with each polynomial F1(J1, J2),
where J1, J2 ⊆ [n] are two disjoint subsets of order 1 – i.e. all polynomials
x1, . . . , xn+m and (1− x1), . . . , (1− xn+m).
This yields the following m · 2(n+m) constraints:∑

i∈K′
j

xix1

− x1 = 0,∀j ∈ [m],

...∑
i∈K′

j

xixn+m

− xn+m = 0,∀j ∈ [m],

∑
i∈K′

j

xi − xix1

+ x1 − 1 = 0,∀j ∈ [m],

...∑
i∈K′

j

xi − xixn+m

+ xn+m − 1 = 0, ∀j ∈ [m].

(2.25)

Using the relationships x2
k = xk,∀k ∈ [n+m] on all equations it is applicable,
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namely the ones with k ∈ K ′
j, we get:

∀j ∈ [m], k ∈ [n+m] :



∑
i∈K′

j

xixk

− xk = 0, if k /∈ K ′
j,∑

i∈K′
j\{k}

xixk = 0, if k ∈ K ′
j

and



∑
i∈K′

j

xi − xixk

+ xk − 1 = 0, if k /∈ K ′
j, ∑

i∈K′
j\{k}

xi − xixk

+ xk − 1 = 0, if k ∈ K ′
j.

(2.26)

The remaining nonlinear terms are linearized, by substituting wik = xixk

with all the quadratic terms left in the equations.
In addition to the equality constraints acquired through multiplication of the
original conflict set constraints with polynomials, we require nonnegativity
constraints on the polynomials F2(J1, J2) as described in (2.12), for all pos-
sible subsets J1, J2 ⊆ [n] of order 2.
These are given by:

∀i, k ∈ [n+m], with i ̸= k :

xixk ≥ 0,

xi(1− xk) ≥ 0,

(1− xi)(1− xk) ≥ 0,

(2.27)

resulting in a total of 2(n+m− 1)(n+m) inequality constraints – a quarter
defined in the first and third constraint set with 1

2
(n +m − 1)(n +m) con-

straints each and half of them in the middle expression with (n+m−1)(n+m)
constraints. Just as for the equations acquired through polynomial multipli-
cation in (2.26), the quadratic terms are then replaced by wik = xixk. They

are indexed by the pair set [[n + m]]2, resulting in a total of (n+m−1)(n+m)
2

terms.

Before passing on to combine the thus acquired constraints in the set X1,
we make the following observations:

Remark 2.11. Firstly, it should be noted that the constraints acquired by
polynomial multiplication still imply the original constraints – this holds
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for both the bounding constraints on our decision variables 0 ≤ xi ≤ 1,
∀i ∈ [n+m] and the conflict set constraints of the problem formulation (2.24),∑

i∈K′
j
xi = 1, ∀j ∈ [m].

The former are implied by the nonnegativity constraints (2.27): We can
see that the first constraint of (2.27) implies that all decision variables
are either nonnegative, or nonpositive. The option that they are nonpos-
itive can be discarded by considering the second constraint of (2.27), hence
xi ≥ 0, ∀i ∈ [n+m]. Using this fact with the third constraint of (2.27), we
can deduct that 0 ≤ xi ≤ 1, ∀i ∈ [n+m].

Similarly, we can see that the m · 2(n + m) reformulated constraints still
imply the original conflict set constraints of (2.24). Indeed, as the original
constraints are equalities that were multiplied by terms xk and (1− xk), for
k ∈ [n + m], the resulting equations can be transformed to their original
version by simply adding the equations multiplied with xk to the ones mul-
tiplied with (1− xk).

This last observation highlights the possibility for a more concise set of
constraints, than the one described in (2.26). As the equations we acquired
from multiplying the conflict set constraints with (1−xk), ∀k ∈ [n+m], are
implied by the original constraints and the equations we got by multiplication
with terms xk, ∀k ∈ [n+m], we can replace the former with the conflict set
constraints. The resulting set of constraints is equivalent to the previous one
in (2.26) – even when considering relaxations later on – but only consists of
m(n+m) +m equations, yielding a more efficient formulation:

∀j ∈ [m], k ∈ [n+m] :



∑
i∈K′

j

xixk

− xk = 0, if k /∈ K ′
j,∑

i∈K′
j\{k}

xixk = 0, if k ∈ K ′
j

and ∀j ∈ [m] :
∑
i∈K′

j

xi = 1.

(2.28)

We note that this reduction of constraints only works for the Q-MWIS prob-
lem with equality constraints. A linearization of the original problem instance
with inequality constraints must therefore contain both constraint sets – the
ones we acquire by multiplication with xk and (1− xk), ∀k ∈ [n].
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After thus constructing the new equality and nonnegativity constraints,
the constraints from (2.28) and (2.27) are linearized by setting wik = xixk,
∀ik ∈ [[n +m]]2 (i.e. i < k) and combined to define the polyhedral set X1,

which contains tuples (x,w) ∈ Rn+m × R 1
2
(n+m−1)(n+m):

X1 =

{
(x,w)

∣∣∣∣∀j ∈ [m], k ∈ [n+m] and k /∈ K ′
j :∑

s∈K′
j

s<k

wsk +
∑
t∈K′

j

t>k

wkt

− xk = 0; (2.29)

∀j ∈ [m], k ∈ [n+m] and k ∈ K ′
j :∑

s∈K′
j\{k}

s<k

wsk +
∑

t∈K′
j\{k}

t>k

wkt = 0; (2.30)

∀j ∈ [m] :
∑
i∈K′

j

xi = 1; (2.31)

Additionally, ∀ik ∈ [[n+m]]2 :

wik ≥ 0, (2.32)

xi − wik ≥ 0,

xk − wik ≥ 0,
(2.33)

wik − xi − xk + 1 ≥ 0

}
. (2.34)

Remark 2.12 (Connection to trivial linearization). It is apparent at this
point that the set X1 contains all constraints of the trivial linearization de-
scribed in Example 2.6 – namely the nonnegativity and conflict set con-
straints. As such, the Sherali-Adams linearization is bound to provide a
tighter LP relaxation, than the trivial linearization we considered prior, when
projected on the original space of decision variables Rn+m – at the cost of a
higher number of variables and constraints.
However, we will see that some redundant constraints can be omitted, under
a weak assumption.

Due to the structure of the conflict set constraints, we can simplify X1

further. To do so, we only have to assume that the problem is in standard
form (see Definition 2.3) and add nonnegativity constraints for the decision
variables xi, ∀i ∈ [n+m].
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Lemma 2.13. Let the original Q-MWIS problem (2.24) that we consider
here be in standard form. Then, the (n +m − 1)(n +m) constraints of X1

described in (2.33), given ∀ik ∈ [[n+m]]2 by

xi − wik ≥ 0 and

xk − wik ≥ 0,
(2.35)

are implied by nonnegativity constraints xi ≥ 0, ∀i ∈ [n +m] and the other
constraints of X1, excluding (2.34).

Proof. Firstly, it should be noted that the nonnegativity constraints on the
decision variables are implied by constraints (2.32) and (2.33). Thus, they
can be added to X1, without affecting the properties of the linearization later
on.

Let ik ∈ [[n + m]]2 be any label pair (with i < k, as per definition). Since
the problem is in standard form, it holds for said pair that

∀i ∈ [n+m], ∃j ∈ [m] : i ∈ K ′
j and either k ∈ K ′

j or k /∈ K ′
j. (2.36)

In the case that k ∈ K ′
j, we have from the second constraint (2.30) that ∑

s∈K′
j\{k,i}
s<k

wsk +
∑

t∈K′
j\{k,i}
t>k

wkt

+ wik = 0. (2.37)

Coupled with the first nonnegativity constraint (2.32), given by wst ≥ 0,
∀st ∈ [[n +m]]2, this means that wik = 0 and the constraints (2.35) reduce
to nonnegativity constraints xi, xk ≥ 0, which we assumed to hold.

If k /∈ K ′
j, the first constraint (2.29) reads ∑

s∈K′
j\{i}

s<k

wsk +
∑

t∈K′
j\{i}

t>k

wkt

+ wik − xk = 0. (2.38)

Again, as wst ≥ 0, ∀st ∈ [[n+m]]2, this implies the sums in the parentheses
are greater equal zero and thus wik−xk can’t be strictly greater 0. Therefore,
wik − xk ≤ 0, i.e. xk − wik ≥ 0 holds.

A similar reasoning deducts xi −wik ≥ 0, if the roles of i and k are reversed
in the steps above.
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Under the same assumptions, we can omit another set of constraints,
which can be acquired by combining the others:

Lemma 2.14. Let the original Q-MWIS problem (2.24) that we consider
here be in standard form. Then, the 1

2
(n+m− 1)(n+m) constraints (2.34),

given ∀ik ∈ [[n+m]]2 by

wik − xi − xk + 1 ≥ 0, (2.39)

are already implied by the other constraints of X1 and nonnegativity con-
straints xi ≥ 0, ∀i ∈ [n+m].

Proof. Firstly, we can see that xi ∈ [0, 1] holds ∀i ∈ [n + m]: xi ≥ 0,
∀i ∈ [n+m] was added through constraints and due to the original problem
being in standard form, every decision variable is contained in at least one
conflict set. Thus, ∀i ∈ [n+m], ∃j ∈ [m], such that i ∈ K ′

j and∑
s∈K′

j\{i}

xs + xi = 1. (2.40)

Coupled with the nonnegativity of decision variables, this implies that xi ≤ 1
holds ∀i ∈ [n+m].

Now, let ik ∈ [[n + m]]2 be any label pair. If there exists any conflict set
containing both labels, we have xi + xk ≤ 1 from the respective conflict
set constraint (2.31). When combining this with the constraints wst ≥ 0,
∀st ∈ [[n+m]]2 from (2.32), inequality (2.39) directly follows.

In the case that there exists no conflict set containing both labels i, k, we
know from the problem being in standard form that there exists a conflict
set containing i, i.e. ∃j ∈ [m], such that i ∈ K ′

j and k /∈ K ′
j.

Thus, the first type of constraints (2.29) in X1 yields ∑
s∈K′

j\{i}
s<k

wsk +
∑

t∈K′
j\{i}

t>k

wkt

+ wik − xk = 0. (2.41)

Additionally, as has been proven in Lemma 2.13, without using (2.39), con-
straints (2.35) are implied by the other constraints used here, i.e.

xs ≥ wsk, ∀s ∈ K ′
j \ {i}, s < k and

xt ≥ wkt, ∀t ∈ K ′
j \ {i}, t > k,

(2.42)

36



hold.
Lastly, we consider the conflict set constraints (2.31), which yield∑

s∈K′
j\{i}

xs = 1− xi. (2.43)

Plugging the inequalities (2.42) into the equation (2.43) results in the in-
equality ∑

s∈K′
j\{i}

s<k

wsk +
∑

t∈K′
j\{i}

t>k

wkt ≤ 1− xi. (2.44)

Combining (2.44) with (2.41), we get

0 =

 ∑
s∈K′

j\{i}
s<k

wsk +
∑

t∈K′
j\{i}

t>k

wkt

+ wik − xk ≤ 1− xi + wik − xk, (2.45)

i.e. wik − xi − xk + 1 ≥ 0.

As mentioned in Remark 2.4, any Q-MWIS problem can be reduced to one
in standard form, so it’s an easily satisfiable assumption. The observation
that we can arrive at a more concise set of constraints, if the problem is
assumed to be in standard form, is bundled in the following:

Theorem 2.15 (Concise constraint set for Q-MWIS linearization with equal-
ity constraints in standard form). Let the original Q-MWIS problem (2.2) be
in standard form and consider the set X1, as defined in constraints (2.29)-
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(2.34). Then, the polyhedral set

X ′
1 =

{
(x,w)

∣∣∣∣∀j ∈ [m], k ∈ [n+m] and k /∈ K ′
j :∑

s∈K′
j

s<k

wsk +
∑
t∈K′

j

t>k

wkt

− xk = 0;

∀j ∈ [m], k ∈ [n+m] and k ∈ K ′
j :∑

s∈K′
j\{k}

s<k

wsk +
∑

t∈K′
j\{k}

t>k

wkt = 0;

∀j ∈ [m] :
∑
i∈K′

j

xi = 1;

∀ik ∈ [[n+m]]2 : wik ≥ 0,

∀i ∈ [n+m] : xi ≥ 0

}
.

(2.46)

is equivalent to X1.

Proof. The fact that constraints (2.33) and (2.34) are implied by the con-
straints (2.29)-(2.32), coupled with nonnegativity constraints on variables
xi ≥ 0, ∀i ∈ [n+m], has been proven in Lemmas 2.13 and 2.14. Therefore,
X ′

1 is a subset of X1. The opposite also holds, since the constraints (2.32)
and (2.33) of X1 imply the nonnegativity constraints xi ≥ 0, ∀i ∈ [n+m].
Hence, X1 is equivalent to X ′

1, if the Q-MWIS problem is in standard form.

In total, the set X1 contains 3m2 + 2n2 + 5mn−m− 2n constraints and
n2+n+m2+m

2
+mn variables, while X ′

1 consists of
3
2
m2+ 1

2
n2+2mn+ 3

2
m+ 1

2
n

constraints and the same amount of variables. Since the sets are equivalent,
the formulation of X ′

1 is clearly preferable.

Comparing this to the trivial linearization described in Example 2.6 that
consisted of m+ 3|NZ |+ 2(n+m) constraints (including the bounding con-
straints on decision variables 0 ≤ xi ≤ 1, ∀i ∈ [n +m]) with n +m + |NZ |
variables, we can see that X ′

1 contains fewer constraints if NZ = [[n +m]]2,
with the same amount of variables. However, if the number of non-zero pair-
wise costs is very low, the trivial linearization contains fewer constraints in
fewer variables. Which constraint set is preferable might therefore depend
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on the specific problem instance.

We can use the more concise constraint representation of X ′
1 in place of

X1, in order to define a linearization of the original Q-MWIS problem, when
said problem is in standard form. It is given by

max
x∈{0,1}n+m

w∈{0,1}
1
2 (n+m−1)(n+m)

n∑
i=1

cixi +
∑

ik∈NZ

cikwik

s.t. (x,w) ∈ X ′
1,

(2.47)

with x = (xi)i∈[n+m] := (x1, . . . , xn+m) and w = (wik)ik∈[[n+m]]2 .

To ensure that the resulting ILP formulation (2.47) is indeed a valid
linearization of the original QIP formulation of the Q-MWIS problem in (2.2),
we have to prove that solving the ILP problem also solves the original QIP
problem and the other way around.

Proposition 2.16. If the original Q-MWIS problem (2.2) is in standard
form, any feasible solution x ∈ Rn+m can be matched to some tuple (x,w)
feasible to the ILP problem (2.47) and vice versa, with both yielding the same
objective value in their respective objective function.

Proof. Let XQ be the feasible set for the QIP formulation of the Q-MWIS

problem defined in (2.2) and X ′f
1 the feasible set to the corresponding ILP

problem (2.47), given by X ′f
1 := X ′

1 ∩ {0, 1}n+m+ 1
2
(n+m−1)(n+m).

So as to prove the equivalence of the problems, we first show that ∀x ∈ XQ,

∃w ∈ {0, 1} 1
2
(n+m−1)(n+m), s.t. (x,w) ∈ X ′f

1 . Since the linearization is based
on replacing the terms xixk, it can be seen that setting w = (wik)ik∈[[n+m]]2 ,
with wik = xixk, ∀ik ∈ [[n +m]]2, works for any x ∈ XQ: In this case, the
equality constraints of X ′

1 defined in (2.46) revert back to their original form,
namely the conflict set constraints

∑
i∈K′

j
xi = 1, ∀j ∈ [m], multiplied by

xk, ∀k ∈ [n +m] and the conflict set constraints themself. Because x ∈ XQ

implies that the latter hold – and therefore the constraints reformulated
with polynomial multiplication, too – such tuples (x,w) fulfill the equality
constraints of X ′

1. The nonnegativity constraints of X ′
1 are also satisfied,

which follows directly from the fact that we picked wik = xixk, ∀ik ∈ [[n+m]]2

and xi ∈ {0, 1}, ∀i ∈ [n + m]. In summary, all constraints of X ′
1 hold and

(x,w) ∈ {0, 1}n+m+ 1
2
(n+m−1)(n+m), therefore (x,w) ∈ X ′f

1 .

The other direction, stating that for all tuples (x,w) ∈ X ′f
1 , x is also an

element of XQ, follows immediately from the fact that such x ∈ {0, 1}n+m
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must also satisfy the conflict set constraints contained in X ′
1.

Lastly, in order to see that the objective function values of the problems are
equal for the respective feasible solutions, we need to show that ∀x ∈ XQ,

∃!w, such that (x,w) ∈ X ′f
1 , namely w = (wik)ik∈[[n+m]]2 , with wik = xixk,

∀ik ∈ [[n+m]]2, since in that case the objective functions are equivalent.
It can be noted that the inequality constraints, which we used in the trivial
linearization of the Q-MWIS problem defined in (2.9), are also present in
the set X1 in form of the nonnegativity constraints. As X ′

1 is equivalent to
X1, these constraints are also satisfied for X ′

1. Thus, it is easy to see that
tuples (x,w) feasible to X ′f

1 have to satisfy wik = xixk, ∀ik ∈ [[n + m]]2,
following the same reasoning as in Example 2.6. Therefore, the objective
function values of the original QIP and reformulated ILP problems are equal
for the respective feasible solutions x and (x,w).

After establishing the equivalence of the ILP reformulation (2.47) to the
initial problem, we follow up with a comparison of its LP relaxation to the
LP relaxation of the initially considered linearization:

Proposition 2.17. The LP relaxation of the linearization according to the
RLT by Sherali-Adams (2.47) is tighter than the LP relaxation of the triv-
ial linearization (2.9), when projected on the space of the decision variables
xi, i ∈ [n+m].

Proof. Let X̂ denote the feasible set of the LP relaxation based on the trivial
linearization (2.9), containing tuples (x, y) ∈ Rn+m × RNZ and define the
respective projected sets as:

X̂P =
{
x ∈ Rn+m | (x, y) ∈ X̂

}
and (2.48)

X ′
P 1 =

{
x ∈ Rn+m | (x,w) ∈ X ′

1

}
. (2.49)

In order to prove that the Sherali-Adams linearization results in an LP re-
laxation for the decision variables, which is at least as tight as the one of the
trivial linearization, we have to prove that its projected set X ′

P 1 is a subset

of X̂P . To this end, it is sufficient to see that all constraints contained in
X̂ are implied by constraints of X ′

1. Indeed, all nonnegativity constraints
and the conflict set constraints of X̂ are also contained in X1 and thus in
X ′

1. Therefore, it holds that ∀(x,w) ∈ X ′
1, ∃y ∈ RNZ , such that (x, y) ∈ X̂.

This means X̂P ⊆ XP 1 holds and that the LP relaxation of the linearization
in (2.47) is tighter than the trivial linearization given in (2.9), when projected
on the space of decision variables.
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Due to the structure of the constraints involving slack variables, we can
note the following:

Proposition 2.18. Let the original Q-MWIS problem with equality con-
straints (2.24) that we consider here be in standard form.
Then, the constraints

∀j ∈ [m], k ∈ [n+m] and k ∈ K ′
j :

∑
s∈K′

j\{k}
s<k

wsk +
∑

t∈K′
j\{k}

t>k

wkt = 0 (2.50)

from the feasible set X ′
1 in (2.46) can be shortened to only consider k ∈ [n],

since the constraints for the slack labels k ∈ {n + 1, . . . , n +m} are already
implied by the other constraints of X ′

1.

Proof. We consider any conflict set K ′
p, p ∈ [m] and some arbitrary slack

label k̂ ∈ {n+ 1, . . . , n+m}.
First, let our slack label k̂ be an element of K ′

p, i.e. k̂ = n+p holds. Coupled
with the nonnegativity constraints of X ′

1 on the linearized terms, namely
wab ≥ 0, ∀ab ∈ [[n+m]]2, the corresponding constraint∑

s∈K′
p\{k̂}

wsk̂ = 0 (2.51)

from (2.50) is equivalent to wsk̂ = 0, ∀s ∈ K ′
p \ {k̂} (note that s < k̂ holds

for any such s).
It can be observed that for every s ∈ K ′

p \{k̂}, the term wsk̂ is also contained
in the sum of the constraint of (2.52), when considering j = p and k = s.
From the nonnegativity of the linearized terms it directly follows that wsk̂ = 0

holds ∀s ∈ K ′
p \ {k̂}, without resorting to any constraint of (2.50) or (2.52)

with k ∈ {n+ 1, . . . , n+m}, showing the desired.

Remark 2.19 (Nonnegative cost case). When additionally assuming the
Q-MWIS problem in Proposition 2.18 to only have nonnegative cost terms
ci ≥ 0, ∀i ∈ [n] and cik ≥ 0, ∀ik ∈ NZ , it appears (from empirical testing)
that constraints

∀j ∈ [m], k ∈ [n+m] and k /∈ K ′
j :

∑
s∈K′

j

s<k

wsk +
∑
t∈K′

j

t>k

wkt

− xk = 0 (2.52)

can be reduced to only consider non-slack labels k ∈ [n], without affecting the
optimal objective function value of the corresponding integer linear program.
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While this remains to be shown in a more rigorous proof, heuristically this
is most likely due to the constraint holding trivially in any optimal solution,
implied by the remaining constraints.

These results mostly focused on linearizations for Q-MWIS problems with
equality constraints, however some of them also apply to the Q-MWIS prob-
lem with inequality constraints. In preparation for the upcoming practical
part, where we will also consider it as an alternative problem linearization,
we can note:

Proposition 2.20 (Concise constraint set for Q-MWIS linearization with
inequality constraints in standard form). Consider the Q-MWIS problem with
inequality constraints as defined in (2.1) and let it be in standard form. Then,
the RLT according to Sherali-Adams for order d = 1 yields the constraint set

Z1 =

{
(x,w)

∣∣∣∣∀j ∈ [m], k ∈ [n] and k /∈ K ′
j :∑

s∈K′
j

s<k

wsk +
∑
t∈K′

j

t>k

wkt

− xk ≤ 0 and

∑
i∈K′

j

xi −
∑
s∈K′

j

s<k

wsk −
∑
t∈K′

j

t>k

wkt

+ xk − 1 ≤ 0;

∀j ∈ [m], k ∈ [n] and k ∈ K ′
j :∑

s∈K′
j\{k}

s<k

wsk +
∑

t∈K′
j\{k}

t>k

wkt ≤ 0 and

∑
i∈K′

j

xi −
∑

s∈K′
j\{k}

s<k

wsk −
∑

t∈K′
j\{k}

t>k

wkt

− 1 ≤ 0;

Additionally, ∀ik ∈ [[n]]2 :

wik ≥ 0,

xi − wik ≥ 0,

xk − wik ≥ 0,

wik − xi − xk + 1 ≥ 0

}

(2.53)
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and Z1 can equivalently be reformulated to

Z ′
1 =

{
(x,w)

∣∣∣∣∀j ∈ [m], k ∈ [n] and k /∈ K ′
j :∑

s∈K′
j

s<k

wsk +
∑
t∈K′

j

t>k

wkt

− xk ≤ 0 and

∑
i∈K′

j

xi −
∑
s∈K′

j

s<k

wsk −
∑
t∈K′

j

t>k

wkt

+ xk − 1 ≤ 0;

∀j ∈ [m], k ∈ [n] and k ∈ K ′
j :∑

s∈K′
j\{k}

s<k

wsk +
∑

t∈K′
j\{k}

t>k

wkt ≤ 0 and

∑
i∈K′

j

xi −
∑

s∈K′
j\{k}

s<k

wsk −
∑

t∈K′
j\{k}

t>k

wkt

− 1 ≤ 0;

∀ik ∈ [[n]]2 : wik ≥ 0,

∀i ∈ [n] : xi ≥ 0

}
.

(2.54)

Proof. The procedure to acquire these results is completely analogous to the
case with equality constraints, with only one small difference: Since Re-
mark 2.11 doesn’t apply for inequality constraints, we can’t replace the con-
straint set that is acquired through multiplication with polynomials (1− xk),
∀k ∈ [n], with conflict set constraints.
However, as long as the problem is in standard form, we can see that Lem-
mas 2.13 and 2.14 still work exactly the same, despite some of the equality
constraints being inequalities, resulting in the more concise constraint set
Z ′

1.

In summary, we have thus far introduced the Q-MWIS problem and vari-
ous reformulations thereof – namely the trivial linearization and the lineariza-
tion according to the Sherali-Adams scheme, both with and without equality
constraints. In the upcoming part, we will focus more on the practical part
of solving Q-MWIS problems, attempting to put to use our alternative for-
mulations.
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3 Solving Q-MWIS Problems

Since the Q-MWIS problem is a generalization of the NP-hard MWIS prob-
lem (see Proposition 1.6), it is also NP-hard. As such, unless P=NP, there
can’t be a polynomial-time algorithm solving all problem instances. How-
ever, this doesn’t necessarily imply intractability for problems of larger scale.
Indeed, one may observe in practice that the MWIS problem is efficiently
solvable for problem instances with ≤ 106 variables and constraints, by em-
ploying off-the-shelf ILP solvers.
Due to the number of quadratic terms, Q-MWIS problems may scale differ-
ently though. In the worst case, if all label pairs [[n]]2 have non-zero costs,

the size of the problem grows rapidly – adding up to n(n−1)
2

quadratic terms
to the objective function.

In Section 1.3, we have already discussed current means of solving MWIS
problems: Besides the algorithms specifically tailored to it, they can also be
directly fed into generic ILP solvers. While we could linearize the quadratic
terms in the Q-MWIS problems, the constraints we have to add for this pur-
pose change the structure of the problem. Hence, these MWIS algorithms
can’t be applied to Q-MWIS problems without adjustments. The possibility
to use ILP solvers still remains, though.
For instance, the solver Gurobi [3] supports both linear and quadratic integer
programs, which would even allow us to directly input Q-MWIS problems.
Whether it is preferable to do so, or instead reformulate the problem first, is
not clear yet, since both have their up- and downsides: While the original Q-
MWIS problem is fairly straightforward in terms of variables and constraints,
it still contains quadratic terms, which might impede the optimization pro-
cess. On the other hand, the linearizations add a vast number of variables
and constraints, but get rid of the quadratic terms, turning the problem into
a pure ILP. In the case of the Sherali-Adams linearization, we additionally
have the advantage of a tightened LP-relaxation.

This last section will focus on two topics: First, discussing ideas on how
to construct a specialized algorithm for the Q-MWIS problem and second,
which of the previously constructed reformulations of the Q-MWIS problem
perform best, when solving simulated problem instances of varying size and
structure with Gurobi.
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3.1 An algorithm for the Q-MWIS problem

An initial idea for a solution algorithm for Q-MWIS problems, was the con-
struction of a primal-dual algorithm. While the primal part includes meth-
ods to improve approximate solutions we acquire, the dual part produces said
approximations, when solving the Lagrange dual problem. However, in the
process of formulating the algorithm it became evident that its convergence
speed is unlikely to prove satisfying. Nevertheless, we will briefly describe
the intended methodology, as parts of it could still be used in a different
algorithm.
The primal-dual algorithm is composed of the following two general parts:

1. On the dual domain, we consider the Lagrange dual problem that is ac-
quired by dualizing the constraints of our Sherali-Adams linearization,
which enforce wik = xixk, ∀ik ∈ [[n + m]]2. The resulting ILPs form
closely matches MWIS problems and is solved for the current Lagrange
multipliers in each update step using Gurobi. This yields a solution
that will then be used to compute a subgradient for the Lagrange mul-
tipliers, which are subsequently updated.

2. On the primal domain, we use the approximate solutions we acquired
in the dual part and attempt to improve them using a recombination
heuristic, which merges two approximate solutions, resulting in an ob-
jective value that is at least as good as the one of the formerly best
approximation. Since finding the optimal crossover of two solutions is
an NP-hard problem in itself, we will look into ways to approximate it.

Following this general description of the algorithm, we first go into detail
with both the dual and primal methods we apply.

The Lagrange dual problem

To this end, we start out by constructing the Lagrange dual for the Q-MWIS
problem, reformulated according to the Sherali-Adams scheme. Generally
speaking, the purpose of the lagrange relaxation is to loosen problematic
constraints, without which the problem would become easier to solve (at the
cost of accuracy). In our case, this would be the constraints binding the new
linear terms of our linearization with the quadratic ones xixk.

In the following, we consider the non-trivial linearization with constraint set
X1 described in (2.29) - (2.34) that we acquired after applying the Sherali-
Adams scheme on the Q-MWIS problem.
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We dualize the 4·
(
1
2
(n+m− 1)(n+m)

)
constraints ensuring that wik = xixk

holds, ∀ik ∈ [[n+m]]2, namely

∀ik ∈ [[n+m]]2, i.e. i < k :

wik ≥ 0,

xi − wik ≥ 0,

xk − wik ≥ 0,

wik − xi − xk + 1 ≥ 0.

(3.1)

To do this, the constraints are moved to the objective function with a La-
grange multiplier (see preliminaries), yielding the Lagrange dual function

D(λ) = max
x∈{0,1}n+m

w∈{0,1}
1
2 (n+m−1)(n+m)

n∑
i=1

cixi +
∑

ik∈NZ

cikwik+

+
∑

jl∈[[n+m]]2

(j<l)

λ
(1)
jl wjl + λ

(2)
jl (xj − wjl) + λ

(3)
jl (xl − wjl) + λ

(4)
jl (wjl − xj − xl + 1),

(3.2)

s.t.

∑
i∈K′

j

wik

− xk = 0, ∀j ∈ [m], k ∈ [n+m] and k /∈ K ′
j,∑

i∈K′
j\{k}

wik = 0, ∀j ∈ [m], k ∈ [n+m] and k ∈ K ′
j,∑

i∈K′
j

xi = 1, ∀j ∈ [m],

(3.3)

with λ = (λ(1), λ(2), λ(3), λ(4)) ∈ R2(n+m−1)(n+m)
≥0 , where λ(i), with i = 1, . . . , 4,

are the respective Lagrange multipliers for each of the four types of con-
straints described in (3.1), which we dualize.
By reformulating the Lagrange dual function to emphasize the cost terms
associated with the decision variables (x,w) and considering that label pairs
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ik ∈ [[n+m]]2 are always taken to be i < k, we get

D(λ) =

max
x∈{0,1}n+m

w∈{0,1}
1
2 (n+m−1)(n+m)

n+m∑
i=1

(
ci +

(
n+m∑
l=i+1

λ
(2)
il − λ

(4)
il

)
+

(
i−1∑
j=1

λ
(3)
ji − λ

(4)
ji

))
xi

+
∑

jl∈[[n+m]]2

(
cjl + λ

(1)
jl − λ

(2)
jl − λ

(3)
jl + λ

(4)
jl

)
wjl +

∑
jl∈[[n+m]]2

λ
(4)
jl ,

(3.4)

s.t. the constraints (3.3) hold.

It should be noted that we have ci = 0, ∀i = n+ 1, . . . , n+m for the unary
cost terms and cjl = 0 for all pairwise cost terms with jl /∈ NZ .

To solve the Lagrange dual problem, we have to find the λ ∈ R2(n+m−1)(n+m)
≥0 ,

which gives us the tightest upper bound of all Lagrange relaxations, mini-
mizing the Lagrange dual function:

min
λ∈R2(n+m−1)(n+m)

≥0

D(λ). (3.5)

As the maximum over linear functions, the Lagrange dual is convex piecewise
linear (see chapter 5.2 of [5]) and therefore not differentiable. Since we are
looking for the minimum of a convex function, we could still resort to the
subgradient method in order to solve the Lagrange dual problem, which also
produces approximate solutions with every iteration for the primal part of
the algorithm.

However, due to the large number of Lagrange multipliers and the gen-
erally fairly slow convergence speed of the subgradient method, this seems
unlikely to provide satisfying results in practical settings.
As an alternative for regular subgradient methods, using a conjugate subgra-
dient method is considered in [23], with the method being described in [24].
Another option is based on the method of weighted dual averages in [25] and
has very low requirements on the function that is to be optimized, in partic-
ular not requiring it to be differentiable or Lipschitz continuous, while still
achieving the optimal convergence rate for first-order methods [26]. Whether
this would sufficiently increase the convergence speed isn’t clear though.

Following this outline of the dual part, we briefly describe how the primal
part of an algorithm could look like – which could also easily be re-used as a
building-block in any other algorithm that produces approximate solutions.
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Recombination of approximate solutions

On the primal part, we consider an ”optimized crossover” heuristic, akin to
the ones used in genetic algorithms, which aims to optimally merge two ap-
proximate solutions into one, with at least as high objective function value
as both of the parent solutions.
The general procedure for genetic algorithms, which were originally proposed
in [27], is to pick some approximate solutions from a pool and recombine
them, using a crossover operator: If a variable choice coincides in both orig-
inal solutions, it remains the same in the recombined one. For differing
solution variables, one value is selected according to the crossover operator.
Additionally, so as to to generate new solution candidates, solutions are mu-
tated in some way at specific intervals
Among others, such heuristic algorithms have since been employed for the
maximum-weight clique [28] and independent set problems [29], using an
”optimized crossover” operator. Said operator is optimal in the sense that it
returns a recombination of the two parent solutions with the highest possible
objective value.

As we already have the means of producing approximate solutions from
the dual part, only the recombination part of such algorithms is required here.
Furthermore, we note that the Lagrange dual problem in (3.4) could be seen
as a MWIS problem with reduced costs, potentially allowing us to apply the
crossover method of [28] for maximum-weight clique problems, which can
be easily reduced to MWIS problems, by considering the complement graph
instead.
In practice, the optimal recombination of two solutions for MWIS problems
can be efficiently implemented in polynomial time, by reducing it to a min-
st-cut problem, as described in [30].
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3.2 Performance of the Q-MWIS problem formulations
in ILP solvers

Following these considerations on an algorithm addressing Q-MWIS prob-
lems, we proceed with a test on how the different problem formulations we
constructed in Section 2 perform, when they’re fed into off-the-shelf ILP
solvers. For this purpose, we consider six different formulations, generate
some problem instances of varying size and structure and solve them with
Gurobi [3], in order to see which one performs best for certain problem struc-
tures.
In practice, when trying to solve problem instances as fast as possible, we
would prepend some transformations of the conflict set structure, according
to Proposition 1.3. This would be to exploit the benefit of larger conflict
sets, namely a tighter LP relaxation, as has been described in Example 1.7
for instance. As the focus here is on comparing the different formulations,
we refrain from doing this.
We also note that, if all unary and pairwise costs associated with some label
i, which is not contained in any conflict set, are positive/negative, the cor-
responding decision variable could be set to 1/0 respectively, before solving
the model. Since this just increases the model setup time, while reducing
the optimization time uniformly for all models only in special cases, we forgo
this process in the implementation.

The Q-MWIS problem formulations

In Section 2, we considered two ways of writing the conflict sets, using either
inequalities or a reformulation to equality constraints. Additionally, we con-
structed two linearizations of the standard formulation, resulting in a total
of six possible ways to (re-)formulate Q-MWIS problems:

Q-MWIS1: The original quadratic integer problem with inequality con-
straints, as stated in Definition 2.1.

Q-MWIS2: Also a QIP like Q-MWIS1, but with slack variables, which
turn the inequality conflict sets constraints into equations, as given in
Definition 2.2.

Q-MWIS3: The ”trivial linearization” akin to the one of Example 2.6, ex-
cept without the reformulation to equality conflict set constraints. As
the quadratic terms are linearized, this yields an ILP.

Q-MWIS4: Same as Q-MWIS3, except with equality conflict set constraints,
see Example 2.6.
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Q-MWIS5: The ILP we acquire after applying the RLT according to Sherali-
Adams on the Q-MWIS problem with inequality constraints, yielding
the constraint set stated in Proposition 2.20.

Q-MWIS6: Another linearization according to the Sherali-Adams scheme,
except applied on the Q-MWIS problem reformulation with equality
constraints, resulting in the ILP problem given in (2.47).

Since the formulations Q-MWIS5 and 6 require the problem to be in standard
form, which we don’t enforce in our problem instance generation, we partially
add the constraints

xi − wik ≥ 0,

xk − wik ≥ 0 and

wik − xi − xk + 1 ≥ 0

(3.6)

back to the formulation for all i, k ∈ [n], where i or k (or both) are not
contained in any conflict set.
Additionally, our implementation applies the results of Proposition 2.18 and
use Remark 2.19 in the case of nonnegative costs, in order to reduce the
number of constraints that are not essential to the problem.

An overview of the models used is given in the following table:

Problem formulation Conflict set type Linearization

Q-MWIS1 inequalities none
Q-MWIS2 equations none
Q-MWIS3 inequalities trivial
Q-MWIS4 equations trivial
Q-MWIS5 inequalities Sherali-Adams
Q-MWIS6 equations Sherali-Adams

Table 1: Q-MWIS problem (re-)formulations used in the Gurobi comparison.

Performance comparison of problem reformulations

In order to compare how the reformulations of Q-MWIS problems perform in
ILP-solvers, we generate example problem instances with Python and solve
them using Gurobi [3], with each problem formulation. The computations
are done on a system with 2.50GHz dual core CPU (Intel Core i7-6500U)
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and 8GB RAM.
Unless specified otherwise, the optimizations are carried out with Gurobi’s
default settings and are set to time out after 5 minutes. Gurobi’s general
optimization routine is:

1. Very briefly generate approximate solutions with heuristics.

2. Presolve the model, reducing its dimensionality in terms of decision
variables and constraints.

3. Solve the LP relaxation of the presolved model (”root relaxation”),
typically using barrier/interior point methods in the case of QIPs and
a dual simplex algorithm for (smaller) ILPs. If the size of the root
relaxation is large, the default choice ”deterministic concurrent” runs
several algorithms on multiple threads at the same time and chooses
the one that finishes first.

4. Apply a branch-and-cut algorithm until the problem is solved (MIP gap
of 0%, i.e. the objective value of the optimal solution and its upper
bound coincide) or timeout occurs.

Problem set 1 – smaller problems with conflict sets of size 2

In this set of problem instances, the focus is on smaller problems that have a
fixed conflict set size of |Kj| = 2, ∀j ∈ [m], with the number of conflict sets
m being equal to the number of (unary) decision variables n. Therefore, the
problems are unlikely to be in standard form.
The unary and pairwise costs are randomly distributed integers in the in-
terval [1, 10] and the pairwise cost matrix density is 100%, i.e. NZ = [[n]]2

holds for the original Q-MWIS problem.

We can see in Table 2 that the default QIP formulations yield results
fastest for the smaller problem instances, while the Sherali-Adams lineariza-
tion with equality conflict set constraints Q-MWIS6 outperforms the others
in larger problems. The trivial linearizations perform worse than the Sherali-
Adams one in every case, but better than the default formulation for larger
problems.
It also appears that the equality constraint reformulations perform marginally
better, with the Sherali-Adams linearization showing the largest improve-
ment due to it.
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Average solution time of model (in s)
n m |Kj| Q-MWIS 1 2 3 4 5 6

20 20 2 0.03 0.03 0.05 0.05 0.08 0.05
40 40 2 0.09 0.09 0.37 0.37 0.32 0.2
60 60 2 0.36 0.34 1.03 1.09 0.82 0.6
80 80 2 2.28 2.19 2.95 2.86 1.69 1.12
100 100 2 16.73 16.81 6.64 6.26 4.84 2.54

Table 2: Average time it took to solve the respective Gurobi models to optimality,
i.e. until the MIP gap is 0%. The solution time is an average for 25 problem
instances and the fastest models are highlighted.

Problem set 2 – smaller problems with scaling conflict set size

So as to investigate the impact of the conflict set size/number on the perfor-
mance of our problem formulations, we consider problems similar to problem
set 1 here, except that we set the number of conflict sets m = n

4
and their

size |Kj| = n
10
, for n (unary) decision variables. The other parameters are

the same, except for the costs, which are set to be integer in the range [1, 3].
The results are:

Average solution time of model (in s)
n m |Kj| Q-MWIS 1 2 3 4 5 6

20 5 2 0.01 0.01 0.04 0.03 0.05 0.04
40 10 4 0.04 0.04 0.21 0.23 0.15 0.13
60 15 6 0.27 0.27 0.86 0.96 0.35 0.27
80 20 8 12.62 12.96 3.05 3.48 0.68 0.5

Table 3: Average time it took to solve the respective Gurobi models to optimality,
i.e. until the MIP gap is 0%. The solution time is an average for 25 problem
instances and the fastest models are highlighted.

While the picture is very similar to the results of problem set 1, the differ-
ence between the linearized problem formulations and the default QIP ones
appears to be increasing with larger conflict set sizes. Indeed, this would
make sense, considering how the total number of constraints, particularly
for the Sherali-Adams linearization, increases with the number of conflict set
constraints in the original Q-MWIS problem.

52



Problem set 3 – mid-sized problems with various conflict set sizes
and numbers

Next, we increase the size of the problems to n = 150 (unary) decision
variables and consider various combinations of conflict set numbers m and
sizes |Kj|, ∀j ∈ [m]. The cost terms are integers in the interval [1, 10] and
NZ = [[n]]2 still holds for the original Q-MWIS problem, i.e. all pairwise
costs are non-zero.
This yields the following results:

Average solution time of model (in s),
Number of models solved to optimality and

Average MIP gap (in %)
n m |Kj| Q-MWIS 1 2 3 4 5 6

206.05 206.17 33.49 34.29 20.22 5.25
150 150 2 2 2 3 3 3 3

0.83 0.91 0 0 0 0
300+ 300+ 271.96 271.54 300+ 231.04

150 150 4 0 0 1 1 0 1
29.61 29.65 21.58 21.61 1000+ 2.34
56.4 57.57 300+ 300+ 300+ 300+

150 150 10 3 3 0 0 0 0
0 0 61.72 66.32 1000+ 45.87

19.79 20.28 4.43 4.74 2.44 2.19
150 50 2 3 3 3 3 3 3

0 0 0 0 0 0
300+ 300+ 94.56 98.07 60.74 4.81

150 50 10 0 0 3 3 3 3
89.02 89.57 0 0 0 0
39.8 40.7 141.28 155.52 116.01 82.55

150 50 20 3 3 3 3 3 3
0 0 0 0 0 0

300+ 300+ 16.5 16.56 1.69 1.39
150 10 20 0 0 3 3 3 3

6.39 7.0 0 0 0 0
233.86 237.79 14.94 14.89 1.58 1.12

150 10 30 3 3 3 3 3 3
0 0 0 0 0 0

10.15 9.96 9.06 9.06 1.42 0.91
150 10 50 3 3 3 3 3 3

0 0 0 0 0 0

Table 4: Average time it took to solve the respective Gurobi models, with a time
limit of 5 minutes. Additionally, the number of models solved to optimality and
the average MIP gap is displayed. For each parameter combination, 3 problems
were solved and the formulation that performed best in all factors was highlighted.

53



It is interesting to see that the linearizations, particularly Q-MWIS6,
perform very well up to a certain point of constraint size and number. When
looking into the console output, one can see that this is due to the solver
struggling to solve the root relaxation for problems with large numbers of
conflict sets – if it can’t be solved in the set time limit, the best solution
returned is the (very bad) initial heuristic solution, resulting in a huge MIP
gap. As the QIP formulations Q-MWIS1 and 2 have a relatively simple LP
relaxation, they are not affected by this, but also can’t close the MIP gap to
optimality very well.
Potentially, the performance of the Q-MWIS linearizations could be improved
here, by fine-tuning parameters or running the computations on a setup
with more RAM. The latter might prevent memory issues, when the barrier
method is used to solve the elaborate root relaxations of the linearizations,
allowing them to proceed quicker to the branch-and-cut phase.

Problem set 4 – mid-sized problems with different cost ranges

So far, the considered problem instances all had non-negative costs, allowing
particularly the Sherali-Adams linearization to shine. To see how partially
negative costs affect the performance of the different formulations, we gener-
ate mid-sized problems with n = 150 decision variables, m = 50 conflict sets
of size |Kj| = 5, ∀j ∈ [m] and various (integer) cost ranges, where almost all
pairwise cost terms are non-zero.

Average solution time of model (in s),
Number of models solved to optimality and

(integer) Average MIP gap (in %)
cost range Q-MWIS 1 2 3 4 5 6

300+ 300+ 28.12 28.86 4.52 2.16
[1, 10] 0 0 10 10 10 10

12.48 12.55 0 0 0 0
300+ 300+ 300+ 300+ 300+ 300+

[−10, 10] 0 0 0 0 0 0
30.19 30.35 232.24 233.26 257.98 319.96
300+ 300+ 300+ 300+ 300+ 300+

[−100, 100] 0 0 0 0 0 0
23.57 23.66 223.46 218.41 234.71 256.41
300+ 300+ 39.74 39.68 7.47 3.7

[1, 1000] 0 0 10 10 10 10
16.05 16.17 0 0 0 0

Table 5: Average results for problem instances with parameters n = 150, m = 50,
|Kj | = 5 and different cost ranges. For each cost range, 10 problems were solved
and the formulation that performed best across all factors was highlighted.
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We can derive the following two conclusions from the results in Table 5:
First, that the cost range doesn’t matter too much, as long as it doesn’t in-
clude negative costs and second that the introduction of negative cost terms
makes a problem significantly harder to solve, particularly for the lineariza-
tions.
Looking into the optimization logs, it appears that the negative costs vastly
reduce the effectivity of the linearizations, by reducing the tightness of their
root relaxations – negating the purpose of these linearizations. Due to this,
it seems unlikely that even fine-tuning the Gurobi parameters would yield a
significant improvement.

Problem set 5 – large problem instances

After testing the problem formulations on mostly small and mid-sized prob-
lem instances, we proceed with larger ones. To lower the computational
load here, we only consider the two strongest formulations so far, namely
Q-MWIS1 and Q-MWIS6. As we have seen, the latter struggles to yield any
solution for larger problems, since the root relaxation can’t be solved using
the barrier method (for memory reasons) and the simplex algorithms take
too long. Thus, we omit the solving of the root relaxation and the subsequent
branch-and-cut procedure, relying purely on heuristics.
The original Q-MWIS problem parameters are n = 1500 decision variables,
m = 100 conflict sets of size |Kj| = 50, ∀j ∈ [m] and integer costs in the
ranges [1, 100] and [−100, 100]. Like for the previous problem, almost all
pairwise cost terms are non-zero, yielding a total of over a million pairwise
terms. Due to the large problem size, we increased the optimization time
limit to 15 minutes per model.

Average MIP gap (in %)
(integer)

Q-MWIS1
Q-MWIS1 Q-MWIS6

cost range (heur) (heur)

[1, 100] 387.57 11230.34 501.69
[−100, 100] 174.4 47269.81 38745.9

Table 6: Average MIP gap for problems with n = 1500 decision variables,
m = 100 conflict sets of size |Kj | = 50, ∀j ∈ [m] and two different cost ranges.
The MIP gap is an average over 3 problem instances and the fastest models are
highlighted.
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As expected, the results of Table 6 show a large MIP gap across all con-
sidered models. Looking into the optimization log for the non-negative cost
range problems, it can be seen that Q-MWIS1 yields a better objective value
and bound than the other models fairly quickly, but stagnates at this level
with little to no improvement. On the other hand, the Sherali-Adams lin-
earization with equality constraints Q-MWIS6 starts out with fairly weak
solutions, but improves them at a quicker rate than Q-MWIS1. When the
time limit is increased to e.g. one hour, Q-MWIS6 outperforms Q-MWIS1
with heuristics only, in terms of the MIP gap.
However, this is probably not the case, when negative cost terms are in-
cluded, considering the greatly larger MIP gap of Q-MWIS6 with heuristics.
When employing heuristic methods only, it can be noted that the Sherali-
Adams linearization performs better than the default Q-MWIS1 with heuris-
tics – since the Q-MWIS1 model performs significantly worse using just
heuristics, instead of solving the root relaxation and using the branch-and-
cut procedure, there is no point in choosing this method, though.

Problem set 6 – problems with differing pairwise cost matrix den-
sities

Lastly, we look into the effect that the amount of non-zero pairwise cost
terms has on the performance of our problem formulations. To this end,
we consider mid-sized problems with n = 200 decision variables, m = 100
conflict sets of size |Kj| = 10, ∀j ∈ [m] and nonnegative integer costs in the
range of [1, 20], with varying amounts of non-zero pairwise cost terms. For
density d ∈ [0, 1], they are given by

|NZ | = d · |[[n]]2| = d · n(n− 1)

2
. (3.7)

We can see from the results in Table 7 that the Sherali-Adams lineariza-
tion with equality constraints Q-MWIS6 noticeably outperforms the other
models for high density values, but falls off for low density values, where
the non-linearized formulations solve the problems fastest. If not accounting
for the model setup time for Q-MWIS6 of roughly 1 second, its performance
becomes comparable to formulations Q-MWIS1 to Q-MWIS4 even for very
low pairwise cost density rates.
Q-MWIS5 however, consistently performs worst throughout all density val-
ues, since the solver fails to solve the root relaxation in the time limit for all
but one problem instance. This result is not surprising, considering how the
Sherali-Adams linearization adds terms wik, ∀ik ∈ [n]2 regardless of whether
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Average solution time of model (in s),
Number of models solved to optimality and

Average MIP gap (in %)
d (density) Q-MWIS 1 2 3 4 5 6

300+ 300+ 282.43 279.08 292.41 99.39
100% 0 0 1 1 1 3

288.08 287.23 32.58 41.4 1000+ 0
300+ 300+ 165.11 159.74 300+ 64.38

50% 0 0 3 3 0 3
210.43 213.9 0 0 1000+ 0
43.21 46.87 22.64 22.8 300+ 21.14

20% 3 3 3 3 0 3
0 0 0 0 1000+ 0

6.14 6.83 6.4 6.79 300+ 6.47
10% 3 3 3 3 0 3

0 0 0 0 1000+ 0
1.19 1.46 2.61 2.68 300+ 2.76

5% 3 3 3 3 0 3
0 0 0 0 1000+ 0

0.18 0.16 0.29 0.25 300+ 1.48
1% 3 3 3 3 0 3

0 0 0 0 1000+ 0

Table 7: Average time it took to solve the respective Gurobi models, with a time
limit of 5 minutes. Additionally, the number of models solved to optimality and
the average MIP gap is displayed. Problem instance parameters were n = 200,
m = 100, |Kj | = 10 with random integer cost terms in the interval [1,20]. For
each pairwise cost density rate d, 3 problems were solved and the formulation that
performed best in all factors was highlighted.

there is a corresponding pairwise cost term in the objective function or not.
Since this is not the case for the trivial linearizations, they perform notice-
ably better here.
The large solving speed difference of Q-MWIS6 over Q-MWIS5 possibly is
attributable to the constraints omitted according to Proposition 2.18 and
Remark 2.19, which prevent cluttering the problem with some non-essential
constraints.
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Summary of results

Generally, it appears that the best choice usually is either the original for-
mulation Q-MWIS1 or the reformulation according to Sherali-Adams with
equality constraints, i.e. Q-MWIS6. Moreover, the difference between the
inequality and equality conflict set variants seems to be negligible for all but
the formulations Q-MWIS5 and 6, where the latter commonly performs no-
ticeably better.

When also considering the structure of a problem instance, we find the
following indications, which problem formulation should be used:
If the problem at hand has nonnegative costs, a medium amount of decision
variables n, preferably fewer, larger conflict sets and fewer zero pairwise cost
terms, the formulation Q-MWIS6 performs strictly better than all other for-
mulations, usually by a margin.
For large problems this might still hold true, but requires further fine-tuning
of the optimization parameters, since the root relaxation becomes difficult
and very time consuming to solve. Doing the computations on a setup with
more memory could help, too.
In the cases, where the costs can be both positive and negative, the problem
is noticeably harder to solve with all formulations – particularly however, for
the linearizations. Hence, using the default formulation Q-MWIS1 could be
the best course then.

After looking into how the different problem formulations perform in prac-
tice, when employing the off-the-shelf solver Gurobi, we finish up with a brief
summary and outlook.

58



4 Conclusion

Over the course of this thesis, we introduced the Quadratic Maximum-Weight
Independent Set (Q-MWIS) problem and looked into ways of solving it, par-
tially through linearization and tightening of the corresponding LP relax-
ation.
To this end, after laying the foundation in the Preliminaries 0, we followed
up with the Introduction 1, where we started out with the MWIS problem
– looking into its computational complexity, the current state of algorithms
addressing it, as well as the influence of the conflict set structure describing
the problem, particularly on its LP relaxation.
Next, we motivated and defined the Q-MWIS problem in Section 2, look-
ing into how it connects to other optimization problems like the QAP and
MAP-Inference for graphical models, as well as introducing notions that
are used later on. As part of a potential solution algorithm and to see,
whether it yields a computational advantage, when used with off-the-shelf
ILP solvers, we consider two linearizations of the quadratic MWIS problem:
A ”trivial” one, which simply replaces the quadratic terms with new decision
variables and binds the two using constraints, and one that is according to
the reformulation-linearization technique (RLT) by Sherali-Adams [2], which
provides a tighter LP relaxation. After looking into how said RLT works,
we apply it on the Q-MWIS problem and prove that some of the resulting
constraints can be redundant, suggesting some more concise formulations.
In the final, practical Section 3, we first briefly considered a potential al-
gorithm for the Q-MWIS problem in form of a primal-dual algorithm and
lastly tested, how the different reformulations we constructed in Section 2
perform, when used to solve Q-MWIS problems with Gurobi [3]. This was
done generating several Q-MWIS problem instance sets with different prob-
lem structures, in order to see how factors like decision variable number,
conflict set size and cost term range affect the performance of the respective
formulations.
We found that the reformulation according to the RLT of Sherali-Adams,
applied to the Q-MWIS formulation with equality constraints, usually out-
performs all others, as long as the costs are nonnegative. If the problem is
so large in size that solving the LP relaxation of the linearization becomes
too computationally expensive, optimization parameters have to be adjusted,
possibly to employ purely heuristic methods.

Further work on this topic could be twofold: First, one might look deeper
into which constraints added in the RLT according to Sherali-Adams are of
use for various problem structures. Indeed, particularly for extremely sparse
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pairwise cost matrices, it seems inefficient to add new variables for every
possible pairwise label. An approach applying more targeted lift-and-project
cuts according to [8] could prove more efficient.
Secondly, the algorithmic part can be greatly extended, looking into how
the structure resulting from the Sherali-Adams linearization can be better
exploited or how the Q-MWIS problem could be solved or approximated,
without using linearizations. Some ideas for this might be derived from the
algorithms addressing the linear MWIS problem, discussed in Subsection 1.3.
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5 Appendix

The Python code used to generate and solve the problems of Subsection 3.2
can be found at https://gitlab.com/homul/q-mwis.
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