Quadratic Maximum-Weight Independent Set Problems (Q-MWIS)

Eldar Keller

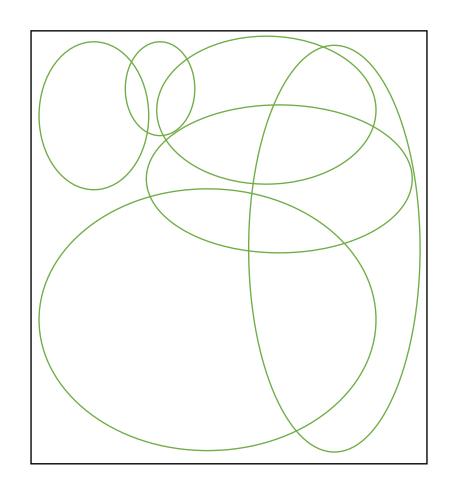
19.03.2024

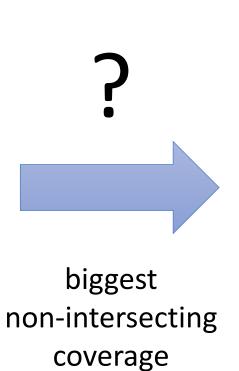
Supervisors:

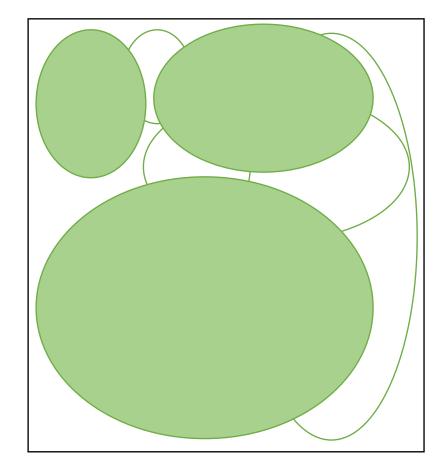
PD Dr. Bogdan Savchynskyy

Prof. Dr. Ekaterina A. Kostina

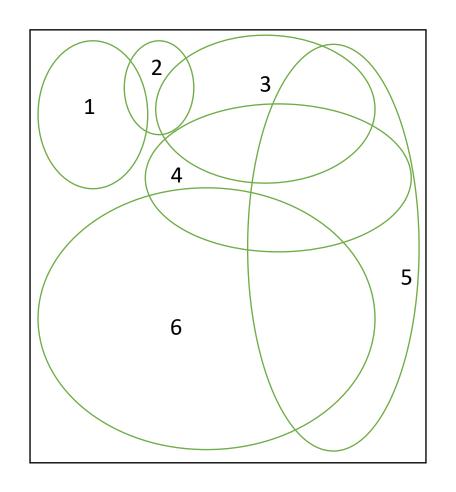
Example: Segmentation



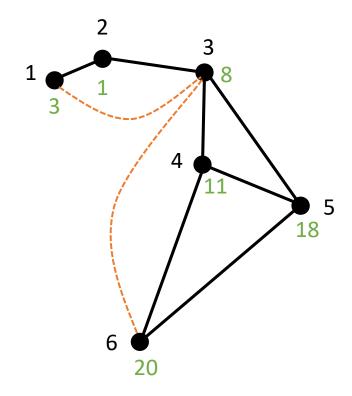




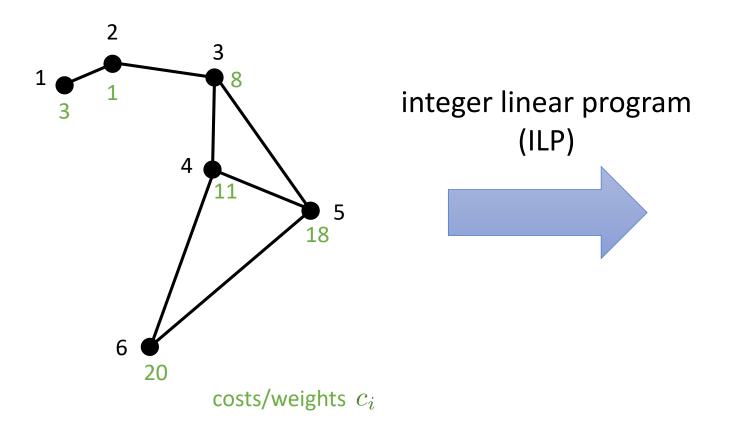
Example: Segmentation



maximum weight independent set (MWIS)



Example: Segmentation



$$\max_{x \in \{0,1\}^6} \sum_{i=1}^6 c_i x_i$$

s.t.
$$x_1 + x_2 \le 1$$

 $x_2 + x_3 \le 1$
 $x_3 + x_4 + x_5 \le 1$
 $x_4 + x_5 + x_6 \le 1$

NP-hard, solvable with

- branch and bound [1]
- local search heuristics [2]
- ILP solvers (e.g. Gurobi)

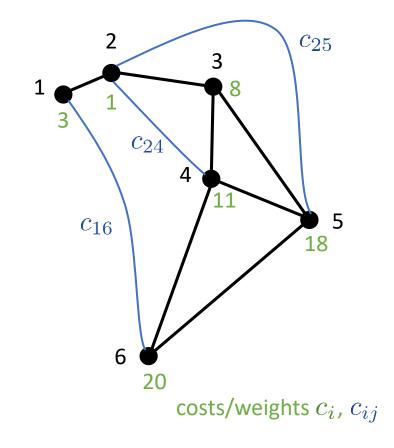
[1] Lamm et al., "Exactly solving the maximum weight independent set problem on large real-world graphs" in Proceedings ALENEX 2019, pp. 144–158, SIAM [2] Dong et al., "A Local Search Algorithm for Large Maximum Weight Independent Set Problems," in Proceedings ESA 2022, vol. 244 LIPIcs, pp. 45:1–45:16

Quadratic Maximum-Weight Independent Set

Some problems require modeling pairwise (quadratic) relations between labels...

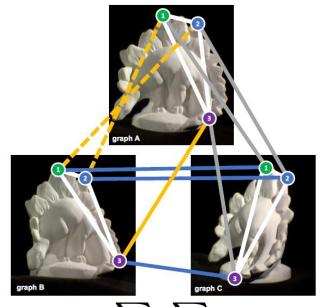
$$\max_{x \in \{0,1\}^6} \sum_{i=1}^6 c_i x_i + c_{16} x_1 x_6 + c_{24} x_2 x_4 + c_{25} x_2 x_5$$
s.t. $x_1 + x_2 \le 1$
...

=> Quadratic Maximum-Weight Independent Set Problem (Q-MWIS) NP-hard, solvable with...



Relation to similar problems

(Multi-)graph matching [3]

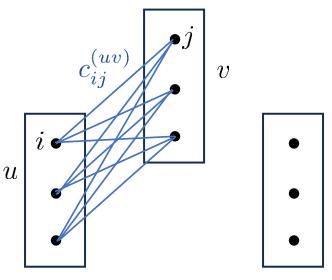


$$\min_{x \in \{0,1\}^{\mathcal{V} \times \mathcal{L}}} \sum_{i,j \in \mathcal{V}} \sum_{s,l \in \mathcal{L}} c_{is,jl} x_{is} x_{jl} \\
\text{s.t.} \begin{cases} \forall i \in \mathcal{V} : \sum_{s \in \mathcal{L}} x_{is} \leq 1 \text{ and} \\ \forall s \in \mathcal{L} : \sum_{i \in \mathcal{V}} x_{is} \leq 1. \end{cases}$$
[4] \(\approx \text{QAP} \)

$$\begin{cases} \forall i \in \mathcal{V} : \sum_{s \in \mathcal{X}} x_{is} < 1 \text{ and} \end{cases}$$

s.t.
$$\begin{cases} \forall s \in \mathcal{L} : \sum_{i \in \mathcal{V}} x_{is} \leq 1. \end{cases}$$

Maximum a posteriori (MAP) inference for graphical models



$$\begin{split} \min_{x \in \{0,1\}^N} \ \sum_{u \in \mathcal{V}} \sum_{i \in \mathcal{Y}_u} c_i^{(u)} x_i^{(u)} + \sum_{uv \in \mathcal{E}} \sum_{i \in \mathcal{Y}_u} \sum_{j \in \mathcal{Y}_v} c_{ij}^{(uv)} x_i^{(u)} x_j^{(v)}, \\ \text{s.t.} \ \forall u \in \mathcal{V}: \ \sum_{i \in \mathcal{Y}_u} x_i^{(u)} = 1. \end{split}$$

[3] P. Swoboda et al., "A convex relaxation for multi-graph matching," in Proceedings of the IEEE/CVF Conference, pp. 11156–11165, 2019

[4] S. Haller et al., "A Comparative Study of Graph Matching Algorithms in Computer Vision". ECCV 2022

Goals of the thesis

- 1. Introduce the Quadratic Maximum-Weight Independent Set Problem (Q-MWIS)
- 2. Construction of an "efficient" linearization

quadratic integer program (QIP)

$$\max_{x \in \{0,1\}^6} \sum_{i=1}^6 c_i x_i + c_{16} x_1 x_6 + c_{24} x_2 x_4 + c_{25} x_2 x_5$$

s.t. $x_1 + x_2 \le 1$

integer linear program (ILP)

$$\max_{\substack{x \in \{0,1\}^6 \\ y \in \{0,1\}^3}} \sum_{i=1}^{6} c_i x_i + c_{16} y_{16} + c_{24} y_{24} + c_{25} y_{25}$$
s.t. $x_1 + x_2 \le 1$

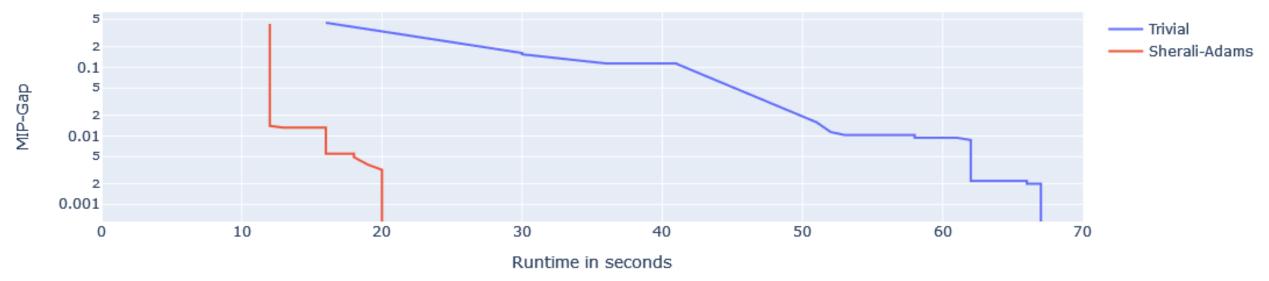
• • •

Linearization methods

"trivial" linearization:

replace $x_i x_k \coloneqq y_{ik}$ add constraints $y_{ik} \le x_i,$ $y_{ik} \le x_k,$ $y_{ik} \ge x_i + x_k - 1.$

My main work: Linearization according to Sherali-Adams [5]

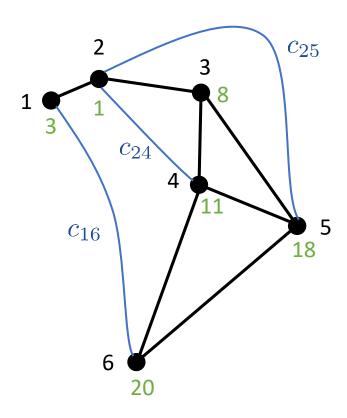


[5] Sherali et al., "A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems," SIAM Journal on Discrete Mathematics, vol. 3, no. 3, pp. 411–430, 1990

Outline

- 1. Q-MWIS problem formulation
- 2. Sherali-Adams linearization
- 3. Performance results of linearizations

General problem formulation

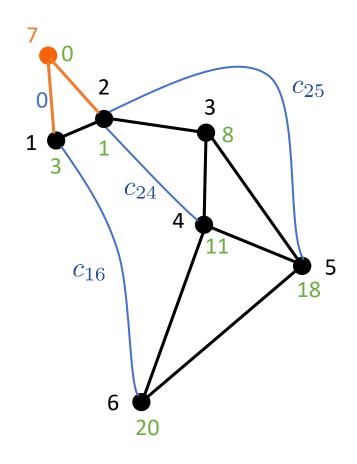


labels
$$[n] := \{1,\dots,n\}$$
 label pairs
$$[[n]]^2 := \{ik \mid i,k \in [n], i < k\} \supseteq N_Z$$
 conflict/clique sets
$$K_j \subseteq [n], \ \forall j \in [m]$$
 unary/pairwise costs
$$c_i, c_{ij}$$

$$\max_{x \in \{0,1\}^n} \sum_{i=1}^n c_i x_i + \sum_{ik \in N_Z} c_{ik} x_i x_k$$
s.t.
$$\sum_{i \in K_j} x_i \le 1, \ \forall j \in [m].$$

quadratic integer program (QIP)

Equality constraint reformulation



labels

slack labels

label pairs

new conflict/clique sets

unary/pairwise costs

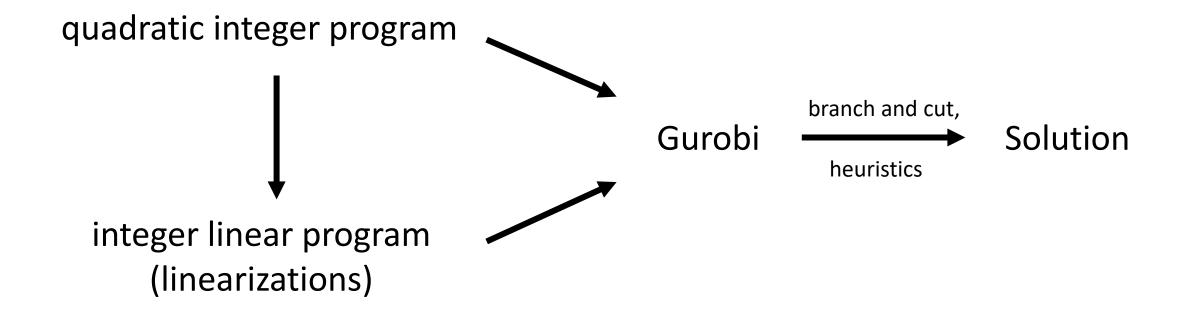
$$[n] = \{1, \dots, n\}$$

 $\{n+1, \dots, n+m\}$
 $[[n+m]]^2$

$$K'_j := K_j \cup \{j\} \subseteq [n+m], \ \forall j \in [m]$$
$$c_i, c_{ij}$$

$$\max_{x \in \{0,1\}^{n+m}} \sum_{i=1}^{n} c_i x_i + \sum_{ik \in N_Z} c_{ik} x_i x_k$$
s.t.
$$\sum_{i \in K'_j} x_i = 1, \ \forall j \in [m].$$

Solution approaches



Trivial linearization

replace

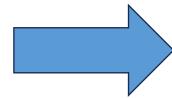
$$x_i x_k := y_{ik}$$

add constraints

$$y_{ik} \le x_i,$$

$$y_{ik} \le x_k,$$

$$y_{ik} \ge x_i + x_k - 1.$$



$$\max_{\substack{x \in \{0,1\}^{n+m} \\ y \in \{0,1\} \mid N_Z \mid}} \sum_{i=1}^{n} c_i x_i + \sum_{ik \in N_Z} c_{ik} y_{ik}$$

$$\text{s.t. } \sum_{i \in K'_j} x_i = 1, \ \forall j \in [m],$$

$$y_{ik} \leq x_i, \ \forall ik \in N_Z,$$

$$y_{ik} \leq x_k, \ \forall ik \in N_Z,$$

$$y_{ik} \geq x_i + x_k - 1, \ \forall ik \in N_Z.$$

Role of constraints

$$\max_{x \in \{0,1\}^3} \sum_{i=1}^3 c_i x_i,$$

s.t.
$$x_1 + x_2 \le 1$$
,

$$x_2 + x_3 \le 1,$$

$$x_1 + x_3 \le 1.$$

or

$$\max_{x \in \{0,1\}^3} \sum_{i=1}^3 c_i x_i$$

s.t.
$$x_1 + x_2 + x_3 \le 1$$
.

Linear Programming (LP) relaxation

$$\max_{x \in [0,1]^3} \sum_{i=1}^3 c_i x_i,$$

s.t.
$$x_1 + x_2 \le 1$$
,

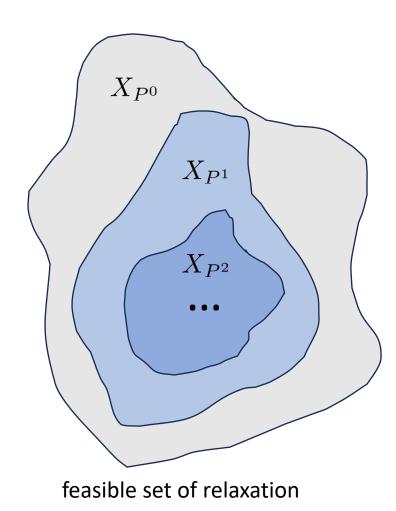
$$x_2 + x_3 \le 1,$$

$$x_1 + x_3 \le 1$$
.

$$\max_{x \in [0,1]^3} \sum_{i=1}^3 c_i x_i,$$

s.t.
$$x_1 + x_2 + x_3 \le 1$$
.

Sherali-Adams linearization



Progressively tighter LP relaxations...

... at the cost of more variables/constraints

=> First order linearization as middle ground

Sherali-Adams linearization of order d

Method: 1. Multiply all constraints with all polynomials

$$F_d(J_1, J_2) = \left(\prod_{j \in J_1} x_j\right) \left(\prod_{j \in J_2} (1 - x_j)\right)$$
, where $J_1, J_2 \subseteq [n], \ J_1 \cap J_2 = \emptyset \text{ and } |J_1 \cup J_2| = d.$

2. Add non-negativity constraints

$$F_{d+1}(J_1,J_2) \geq 0$$
, for all such J_1 , J_2 of order $d+1$.

3. Use relations on constraints:

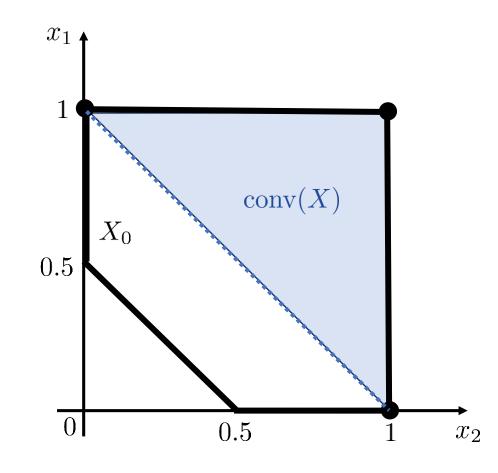
$$x_i^2 = x_i$$
, or equivalently $x_i(1 - x_i) = 0$, $\forall i \in [n]$.

4. Substitute remaining quadratic terms:

$$x_i x_j = w_{ij}$$

Sherali-Adams linearization Example

$$\max_{x \in X} \langle c, x \rangle
X = \{ (x_1, x_2) \in \{0, 1\}^2 \mid 2x_1 + 2x_2 \ge 1 \}
= \{ (0, 1), (1, 0), (1, 1) \}
$$\operatorname{conv}(X) = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 + x_2 \ge 1, \ x_1 \le 1, \ x_2 \le 1 \}
X_{P^0} \equiv X_0 = \{ (x_1, x_2) \in [0, 1]^2 \mid 2x_1 + 2x_2 \ge 1 \}$$$$



Sherali-Adams linearization Example

$$F_d(J_1, J_2) = \left(\prod_{j \in J_1} x_j\right) \left(\prod_{j \in J_2} (1 - x_j)\right), \text{ where}$$

$$J_1, J_2 \subseteq [n], \ J_1 \cap J_2 = \emptyset \text{ and } |J_1 \cup J_2| = d.$$

$$\downarrow d = 1$$

$$x_1, \ x_2, \ (1 - x_1) \text{ and } (1 - x_2)$$

$$\times 2x_1 + 2x_2 \ge 1 \quad x_i^2 = x_i, \ x_1 x_2 = w_{12}$$

$$x_1 + 2w_{12} \ge 0,$$

$$x_2 + 2w_{12} \ge 0,$$

$$x_1 + 2x_2 - 2w_{12} \ge 1,$$

$$2x_1 + x_2 - 2w_{12} \ge 1.$$

$$(1)$$

$$F_2(J_1, J_2) \ge 0$$

$$\int x_i^2 = x_i, \ x_1 x_2 = w_{12}$$

$$w_{12} \ge 0,$$

$$x_1 - w_{12} \ge 0,$$

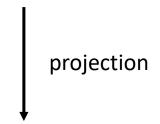
$$x_2 - w_{12} \ge 0,$$

$$1 - x_1 - x_2 + w_{12} \ge 0.$$

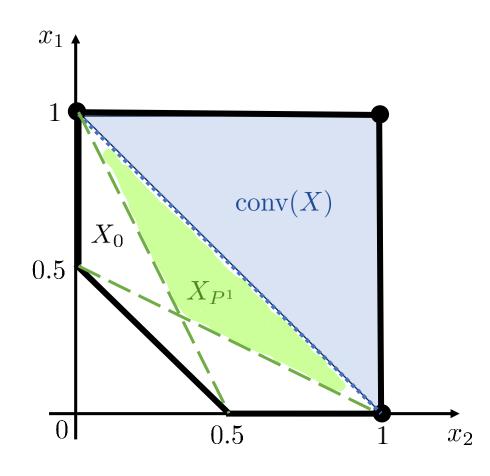
$$(2)$$

Sherali-Adams linearization Example

$$X_1 = \{(x_1, x_2, w_{12}) \in \mathbb{R}^3 \mid \text{constraints } (1) \text{ and } (2) \text{ hold} \}$$



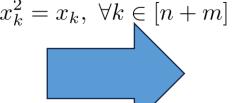
$$X_{P^1} = \{(x_1, x_2) \in \mathbb{R}^2 \mid 2x_1 + x_2 \ge 1, \ x_1 + 2x_2 \ge 1, \ x_1 \le 1, \ x_2 \le 1\}$$



$$\max_{x \in \{0,1\}^{n+m}} \sum_{i=1}^{n} c_i x_i + \sum_{ik \in N_Z} c_{ik} x_i x_k$$

$$\forall j \in [m], k \in [n+m] : \begin{cases} \left(\sum_{i \in K'_j} x_i x_k\right) - x_k = 0, & \text{if } k \notin K'_j, \\ \sum_{i \in K'_j \setminus \{k\}} x_i x_k = 0, & \text{if } k \in K'_j \end{cases}$$

$$\sum_{i \in K'_j} x_i = 1, \ \forall j \in [m] \qquad x_k^2 = x_k, \ \forall k \in [n+m]$$



Polynomials of order d=1

$$\forall i \in [n]: x_i, (1-x_i)$$

$$\forall j \in [m]: \sum_{i \in K_j'} x_i = 1$$

Non-negativity constraints $F_2(J_1, J_2) \ge 0$

$$\forall i, k \in [n+m], \text{ with } i \neq k:$$

$$x_i x_k \ge 0,$$

$$x_i (1-x_k) \ge 0,$$

$$(1-x_i)(1-x_k) \ge 0,$$

In total, after setting $x_i x_k = w_{ik}, \ \forall ik \in [[n+m]]^2$:

$$X_1 = \left\{ (x, w) \middle| \forall j \in [m], k \in [n+m] \text{ and } k \notin K'_j : \right\}$$

$$\left(\sum_{\substack{s \in K'_j \\ s < k}} w_{sk} + \sum_{\substack{t \in K'_j \\ t > k}} w_{kt}\right) - x_k = 0;$$

 $\forall j \in [m], k \in [n+m] \text{ and } k \in K'_j$:

$$\sum_{\substack{s \in K'_j \setminus \{k\} \\ s < k}} w_{sk} + \sum_{\substack{t \in K'_j \setminus \{k\} \\ t > k}} w_{kt} = 0;$$

$$\forall j \in [m]: \sum_{i \in K_i'} x_i = 1;$$

Additionally, $\forall ik \in [[n+m]]^2$: $w_{ik} \geq 0$,

$$x_i - w_{ik} \ge 0,$$

$$x_k - w_{ik} \ge 0,$$

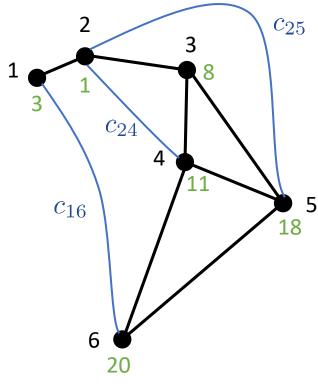
$$w_{ik} - x_i - x_k + 1 \ge 0$$
.

Linearized Q-MWIS problem with Sherali-Adams method:

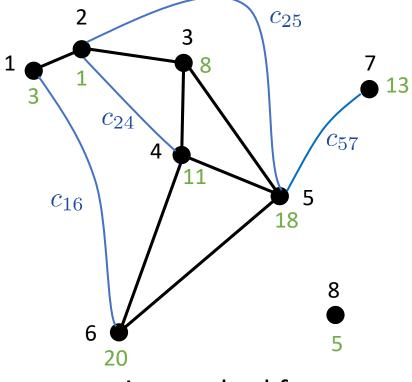
$$\max_{\substack{x \in \{0,1\}^{n+m} \\ w \in \{0,1\}^{\frac{1}{2}(n+m-1)(n+m)}}} \sum_{i=1}^{n} c_i x_i + \sum_{ik \in N_Z} c_{ik} w_{ik}$$
s.t. $(x, w) \in X_1$.

Q-MWIS standard form

Definition:



in standard form



not in standard form

Redundant constraints

Theorem: If Q-MWIS problem in standard form ...

and
$$\forall i \in [n+m]$$
: $\Rightarrow \forall ik \in [[n+m]]^2$:
$$x_i \geq 0 \qquad \qquad x_i - w_{ik} \geq 0,$$

$$x_k - w_{ik} \geq 0,$$

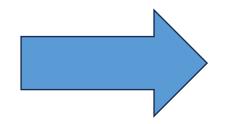
$$w_{ik} - x_i - x_k + 1 \geq 0$$

Concise Linearization

$$X_1' = \left\{ (x, w) \middle| \forall j \in [m], k \in [n+m] \text{ and } k \notin K_j' : \right\}$$

$$\left(\sum_{\substack{s \in K'_j \\ s < k}} w_{sk} + \sum_{\substack{t \in K'_j \\ t > k}} w_{kt}\right) - x_k = 0;$$

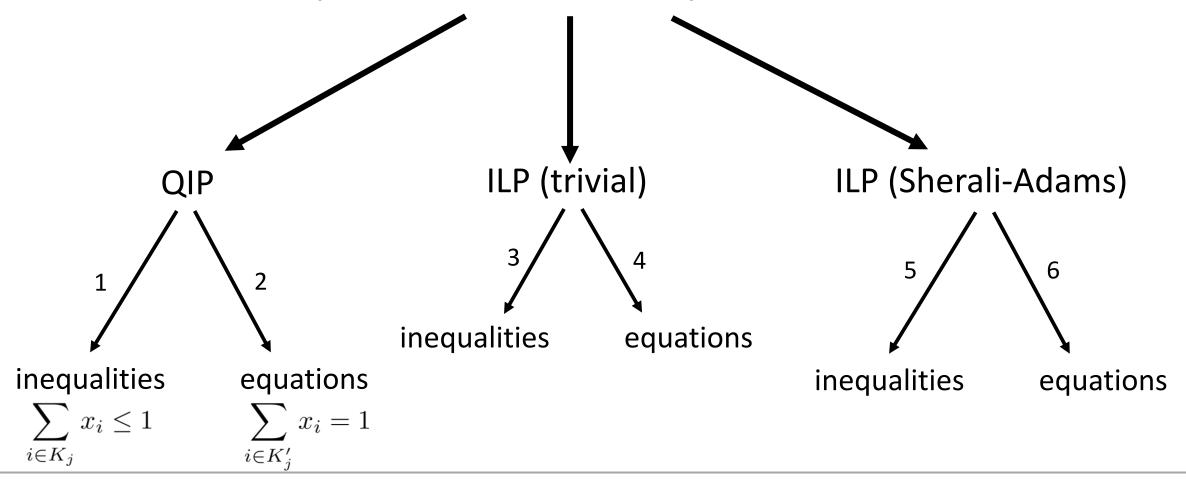
$$\forall ik \in [[n+m]]^2:$$
If $\exists j \in [m]: i, k \in K'_j \Rightarrow w_{ik} = 0.$



Tighter relaxation, fewer constraints than trivial linearization.

Performance testing candidates

Which problem formulation performs best?

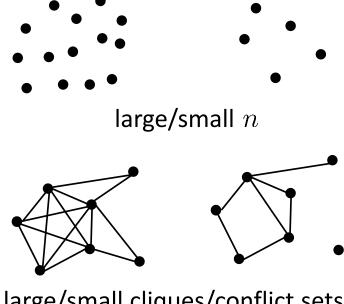


Performance test method

Generate sets of Q-MWIS problem instances of varying size/structure

Solve each instance with different problem formulations using Gurobi solver via Python API

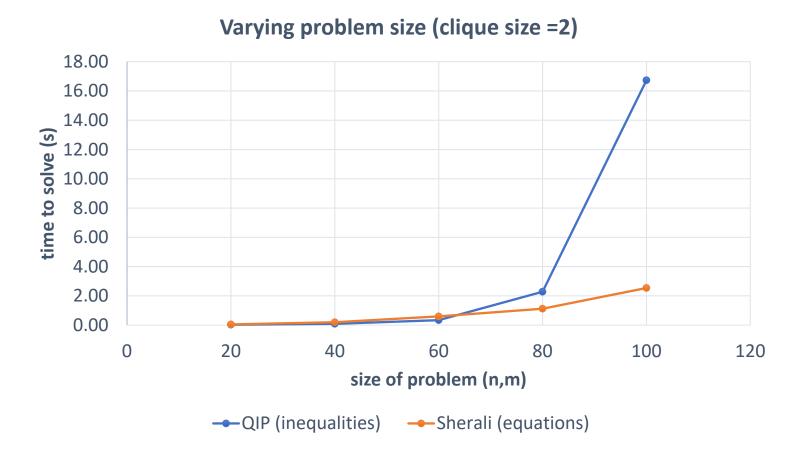
Compare average solution time/MIP gap for every problem set



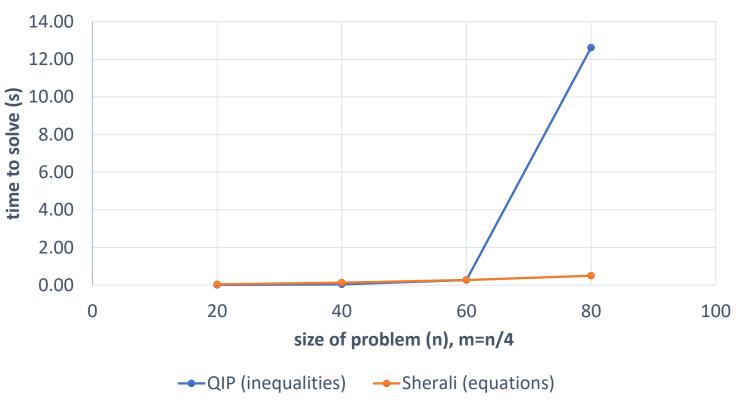
large/small cliques/conflict sets



dense/sparse pairwise costs



larger problems
=> linearizations better



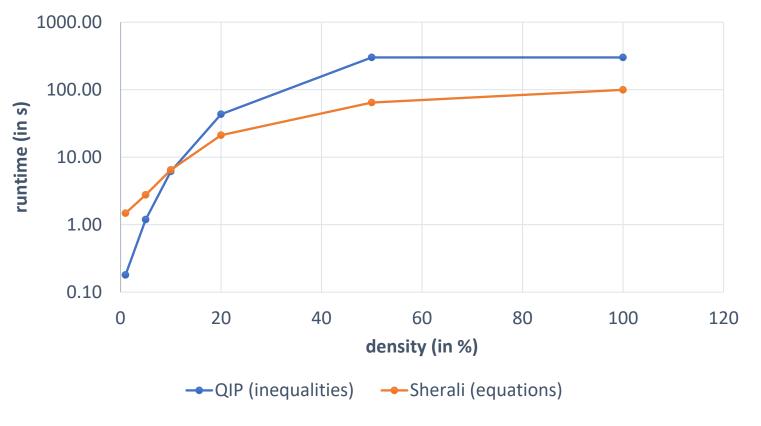
bigger cliques
=> Sherali-Adams better

			Average solution time of model (in s), Number of models solved to optimality and Average MIP gap (in %)								
\mathbf{n}	\mathbf{m}	$ K_j $	Q-MWIS	1	2	3	4	5	6		
				206.05	206.17	33.49	34.29	20.22	5.25		
150	150	2		2	2	3	3	3	3		
				0.83	0.91	0	0	0	0		
				300+	300+	271.96	271.54	300+	231.04		
150	150	4		0	0	1	1	0	1		
				29.61	29.65	21.58	21.61	1000 +	2.34		
				56.4	57.57	300+	300+	300+	300+		
150	150	10		3	3	0	0	0	0		
				0	0	61.72	66.32	1000 +	45.87		

Problem too large => Gurobi gets stuck, solving LP relaxation

... doesn't happen with fewer + larger conflict sets

			Average solution time of model (in s), Number of models solved to optimality and Average MIP gap (in %)									
\mathbf{n}	\mathbf{m}	$ K_j $	Q-MWIS	1	2	3	4	5	6			
150	10	20		300+ 0	300+ 0	16.5 3	16.56 3	1.69	$\begin{array}{c} 1.39 \\ 3 \end{array}$			
				6.39	7.0	0	0	0	0			
150	10	30		233.86 3	237.79 3	14.94 3	14.89 3	1.58 3	$\begin{array}{c} 1.12 \\ 3 \end{array}$			
				0	0	0	0	0	0			
150	10	50		$\frac{10.15}{3}$	$9.96 \\ 3$	$9.06 \\ 3$	$9.06 \\ 3$	$\frac{1.42}{3}$	0.91			
	_ 0			0	0	0	0	0	0			



denser pairwise costs
=> Sherali-Adams better

Sherali-Adams with equality constraints > other linearizations ...

... but implementation has room for improvement in large problems

Summary